Application of Preconditioned Iterative Methods in Selective Smoothed Finite Element Methods F-barwith Tetrahedral Elements

for Nearly Incompressible Materials

Yuki ONISHI
Tokyo Institute of Technology, Japan

Motivation & Background

Motivation

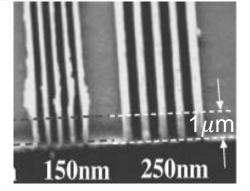
We want to analyze severe large deformation of nearly incompressible solids accurately and stably!

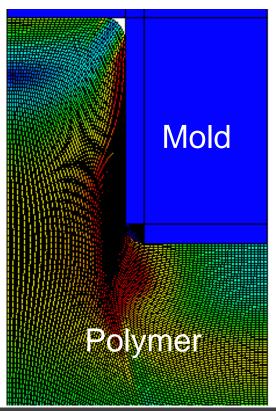
(Target: automobile tire, thermal nanoimprint, etc.)

Background

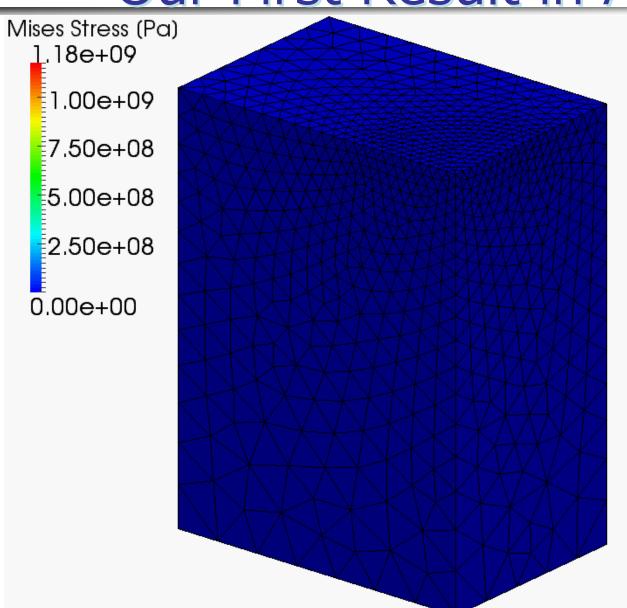
Finite elements are distorted in a short time, thereby resulting in convergence failure.

Mesh rezoning method is indispensable.





Our First Result in Advance



What we want to do:

- Static
- Implicit
- Large deformation
- Mesh rezoning with locking-free T4 elements

Conventional Methods

- Higher order elements:
 - Not volumetric locking free; Unstable in contact analysis; No good in large deformation due to intermediate nodes.
- EAS method:
 - Unstable due to spurious zero-energy modes.
- B-bar, F-bar and selective integration method:
 - Not applicable to T4 mesh directly.
- F-bar patch method:
 - Difficult to construct good patches. Not shear locking free.
- u/p hybrid (mixed) elements:
 - No sufficient formulation for T4 mesh so far. (There are almost acceptable hybrid elements such as C3D4H of ABAQUS.)
- Smoothed finite element method (S-FEM):

Various Types of S-FEMs

■ Basic type

- Node-based S-FEM (NS-FEM)
- Spurious zero-energy
- Face-based S-FEM (FS-FEM)
- Edge-based S-FEM (ES-FEM)
- Volumetric Locking

■ Selective type

- Selective FS/NS-FEM
- Selective ES/NS-FEM
- Limitation of constitutive model, Pressure oscillation, Corner locking

Bubble-enhanced or Hat-enhanced type

- bFS-FEM, hFS-FEM
- bES-FEM, hES-FEM
- Pressure oscillation, Short-lasting

- F-bar type
- F-barES-FEM
- ? Unknown potential

Objective

Develop a new S-FEM, F-barES-FEM-T4, by combining F-bar method and ES-FEM-T4 for large deformation problems of nearly incompressible solids

Table of Body Contents

- Method: Formulation of F-barES-FEM-T4
 - & Introduction of AMG-GMRES
- Result: Verification of F-barES-FEM-T4
- Discussion: Application of AMG-GMRES to F-barES-FEM-T4
- Summary

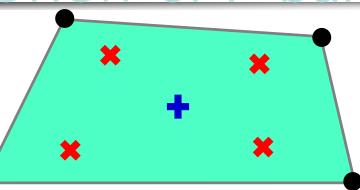
Method

Formulation of F-barES-FEM-T4 & Introduction of AMG-GMRES

(F-barES-FEM-T3 in 2D is explained for simplicity.)

Quick Review of F-bar Method

For quadrilateral (Q4) or hexahedral (H8) elements



<u>Algorithm</u>

- 1. Calculate deformation gradient F at the element center, and then make the relative volume change \overline{J} (= det(F)).
- 2. Calculate deformation gradient F at each gauss point as usual, and then make F^{iso} (= $F/J^{1/3}$).
- 3. Modify *F* at each gauss point as

$$\overline{F} = \overline{J}^{1/3} F^{iso}$$
.

4. Use \overline{F} to calculate the stress, nodal force and so on.

F-bar method is used to **avoid volumetric locking** in Q4 or H8 elements. Yet, it **cannot avoid shear locking**.

Quick Review of ES-FEM

For triangular (T3) or tetrahedral (T4) elements.

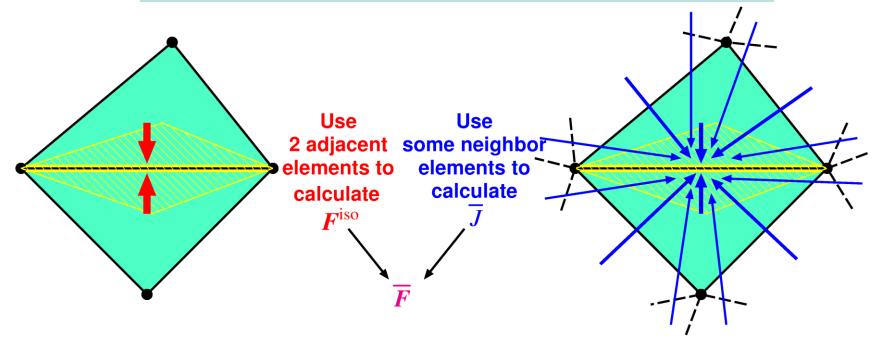
Algorithm:

- 1. Calculate the deformation gradient *F* at each element as usual.
- 2. Distribute the deformation gradient F to the connecting edges with area weights to make $E^{\text{dge}}F$ at each edge.
- 3. Use Edge F to calculate the stress, nodal force and so on.

ES-FEM is used to **avoid shear locking** in T3 or T4 elements. Yet, it **cannot avoid volumetric locking**.

Outline of F-barES-FEM

Concept Combination of F-bar method and ES-FEM



- Edge Fiso is given by ES-FEM.
- \blacksquare Edge \overline{J} is given by Cyclic Smoothing (detailed later).
- \blacksquare Edge \overline{F} is calculated in the manner of F-bar method:

$$Edge_{\overline{F}} = Edge_{\overline{I}} \frac{1}{3} Edge_{\overline{F}} iso$$

Outline of F-barES-FEM

Brief Formulation

- 1. Calculate Elem J as usual.
- 2. Smooth Elem J at nodes and get Node \widetilde{J} .
- 3. Smooth Node \widetilde{J} at elements and get Elem \widetilde{J} .
- 4. Repeat 2. and 3. as necessary (c times).

Cyclic Smoothing of *J*

- 5. Smooth Elem $\widetilde{\widetilde{J}}$ at edges to make $\overline{\overset{\text{Edge}}{J}}$.
- 6. Combine $\frac{\text{Edge }\overline{J}}{I}$ and $\frac{\text{Edge }F^{\text{iso}}}{I}$ of ES-FEM as $\frac{\text{Edge }\overline{F}}{I} = \frac{\text{Edge }\overline{J}}{I}$ $\frac{1}{3}$ $\frac{\text{Edge }F^{\text{iso}}}{I}$.

Hereafter, F-barES-FEM-T4 with c-time cyclic smoothing is called "F-barES-FEM-T4(c)".

Quick Introduction of AMG-GMRES

■ Preconditioner: AMG

- Algebraic Multi-Grid.
- A framework of stationary iterative methods.
- Mainly comprised of 3 parts:
 Smoothing, Restriction, and Prolongation.
- Can be used as a preconditioner.

■ Solver: GMRES

- Generalized Minimal RESidual.
- One of the non-stationary iterative methods.
- Usually used with a restart parameter r as GMRES(r).

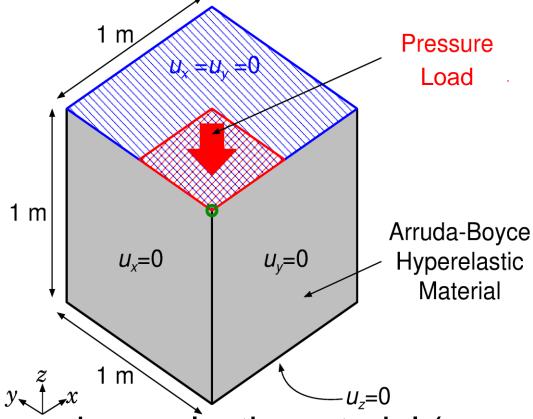
Result

Verification of F-barES-FEM-T4

(Analyses <u>without</u> mesh rezoning are presented for pure verification.)

#1: Compression of a Block

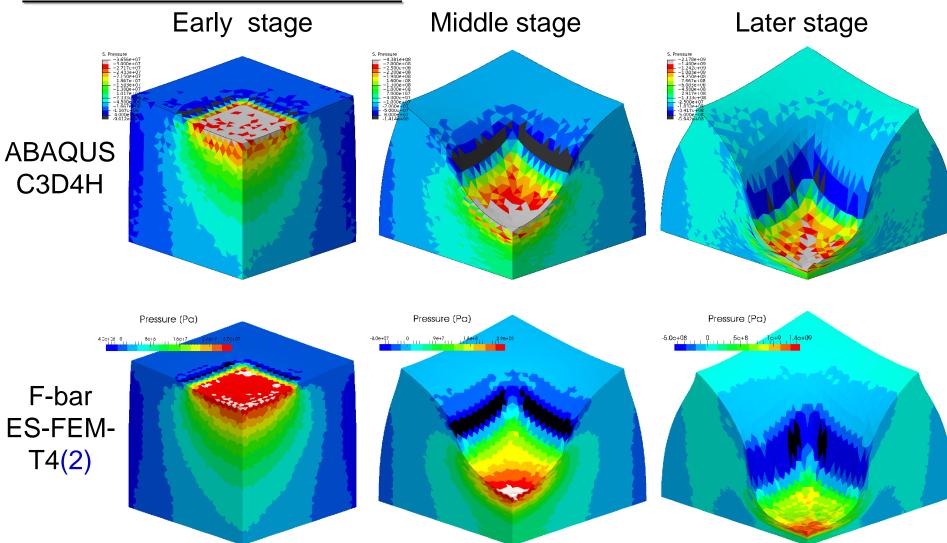
Outline



- Arruda-Boyce hyperelastic material ($\nu_{ini} = 0.499$).
- Applying pressure on ¼ of the top face.
- Compared to ABAQUS C3D4H with the same unstructured tetra mesh.

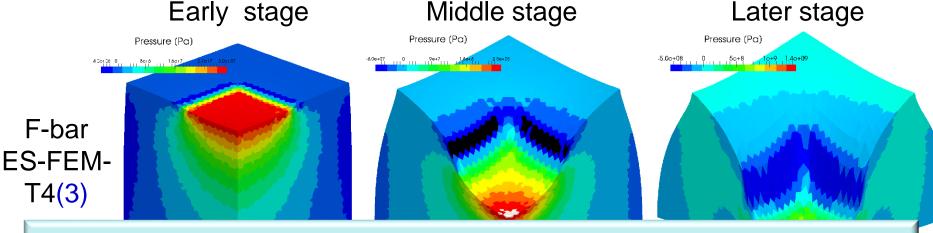
#1: Compression of a Block

Pressure Distribution



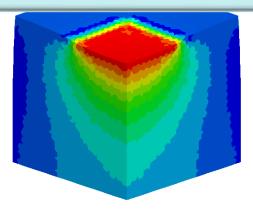
#1: Compression of a Block

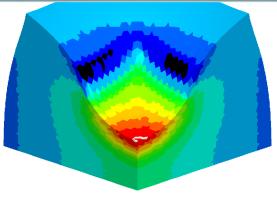
Pressure Distribution

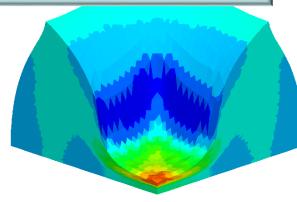


In case the Poisson's ratio is 0.499, F-barES-FEM-T4(2) or later resolves the pressure oscillation issue.

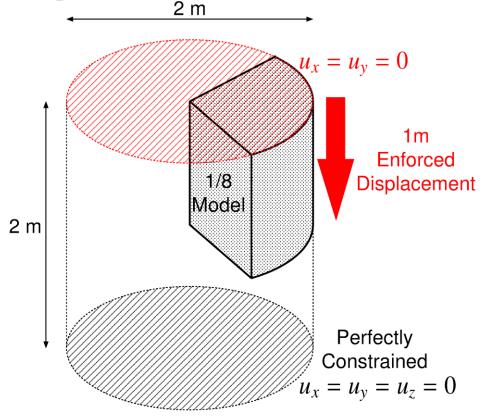
F-bar ES-FEM-T4(4)







Outline

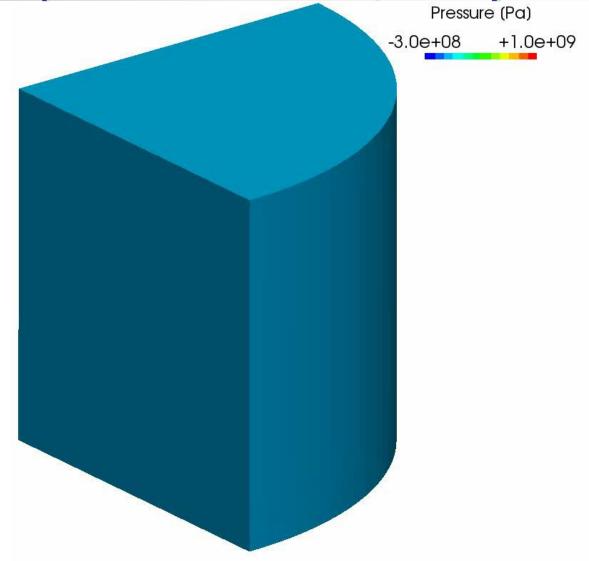


- Neo-Hookean hyperelastic material ($\nu_{ini} = 0.499$).
- Enforced displacement is applied to the top surface.
- Compared to ABAQUS C3D4H with the same unstructured tetra mesh.

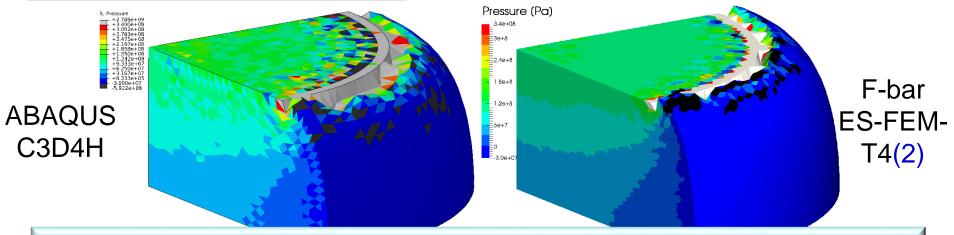
<u>Result</u> <u>of F-bar</u> <u>ES-FEM(2)</u>

50% nominal compression

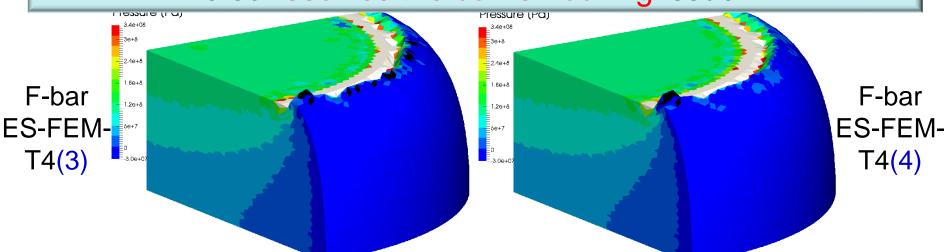
Almost smooth pressure distribution is obtained except just around the rim.



Pressure Distribution



F-barES-FEM-T4 with a sufficient cyclic smoothing also resolves the corner locking issue.



Discussion

Application of AMG-GMRES to F-barES-FEM-T4

Characteristics of [K] in F-barES-FEM-T4

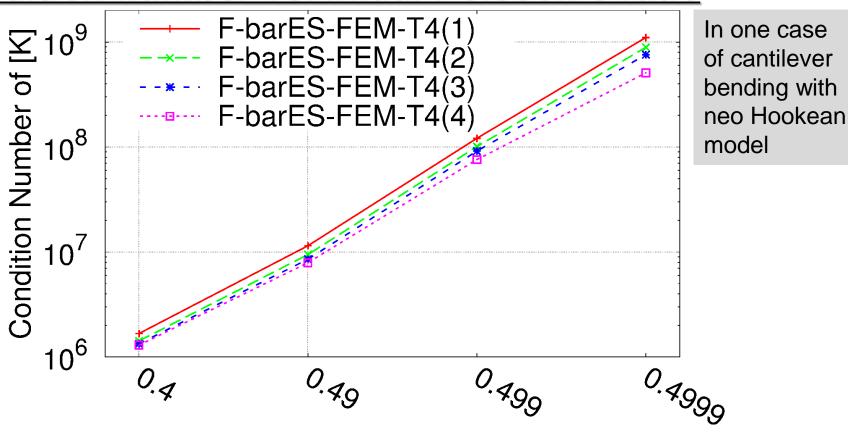
- ✓ No increase in DOF. (No Lagrange multiplier. No static condensation.)
- ✓ Positive definite.
- Wide in bandwidth...
 In case of standard unstructured T4 meshes,

Method	Approx. Bandwidth	Approx. Ratio
Standard FEM-T4	40	1
F-barES-FEM(1)	390	×10
F-barES-FEM(2)	860	×20
F-barES-FEM(3)	1580	×40
F-barES-FEM(4)	2600	×65

Ill-posed...
(Relatively large condition number.)

Condition Number of [K]

Condition number vs. Initial Poisson's ratio



Initial Poisson's Ratio, v^{ini}

Increase in c does not improve the ill-posedness of [K] much... \Rightarrow Application of iterative solver for [K] is difficult.

Capability of AMG-GMRES

■ AMG-GMRES with

- •5th order Chebyshev polynomial smoother
- Jacobi smoothed aggregation
- \bullet Restart number is fixed at r = 150
- # of V-cycle is varied between 10 and 30.

	$\nu = 0.49$	$\nu = 0.499$	$\nu = 0.4999$
# of V-cycle = 10	✓	X	×
# of V-cycle = 20	✓	✓	×
# of V-cycle = 30	✓	✓	✓

Increase in the # of V-cycles improves the condition number of [K] for GMRES and helps the convergence of AMG-GMRES.

CPU Time of AMG-GMRES

CPU time is compared between

- Direct solver: MKL PARDISO of Intel
- Iterative solver: AMG-GMRES(150)

(Note that it is not tuned yet...)

Currently,

- AMG-GMRES is faster only when $\nu \leq 0.49$.
- MKL PARDISO is faster when $\nu > 0.49$.

This is due to the increase of cost for many V-cycles and also the lack of tuning of AMG-GMRES.

In point of speed, F-barES-FEM-T4 needs some improvements. e.g.) finding a good sparse approximation of [K], generalization of [K], and so on.

Summary

Benefits and Drawbacks of F-barES-FEM-T4

Benefits

- ✓ Locking-free with 1st -order tetra meshes.
 No difficulty in severe strain or contact analysis.
- ✓ No increase in DOF.
 No need of static condensation;
 Easy extension to dynamic explicit analysis.
- ✓ Suppression of pressure oscillation in nearly incompressible materials.
- ✓ Suppression of corner locking.

Drawbacks

- \times Increase in bandwidth of the exact tangent stiffness [K].
- \times Relatively large condition number of [K].

F-barES-FEM-T4 has excellent accuracy but needs some effort for speed-up.

Conclusion

- A new FE formulation named "F-barES-FEM-T4" is proposed.
- F-barES-FEM-T4 combines the <u>F-bar method</u> and <u>ES-FEM-T4</u>.
- Owing to the cyclic smoothing, F-barES-FEM-T4 is locking-free and also pressure oscillation-free with no increase in DOF.
- Only one drawback of F-barES-FEM-T4 is the decrease of calculation speed due to the increase in bandwidth of [K], which is our future work to solve.

Thank you for your kind attention!
I appreciate your questions and comments in *easy* and *slow* English!

Appendix

Characteristics of FEM-T4s

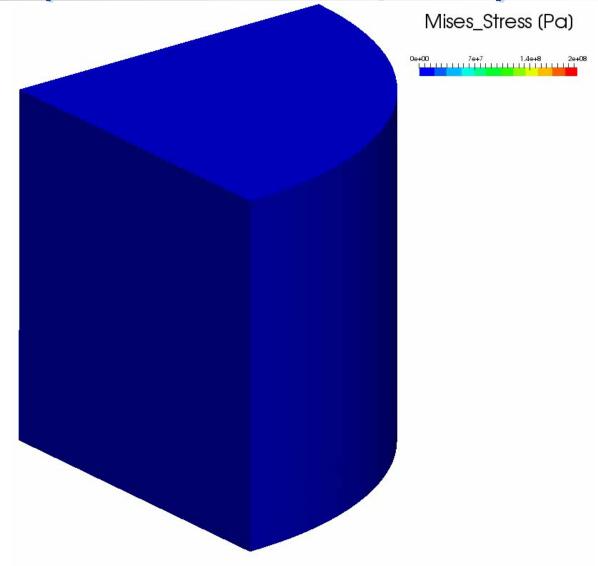
	Shear & Volumetric Locking	Zero- Energy Mode	Dev/Vol Coupled Material	Pressure Oscillation	Corner Locking	Severe Strain
Standard FEM-T4	X	√	√	X	X	✓
ABAQUS C3D4H	✓	✓	✓	X	X	✓
Selective S-FEM-T4	✓	✓	X	X	X	✓
bES-FEM-T4 hES-FEM-T4	✓	√	√	X	X	X
F-bar ES-FEM-T4	✓	✓	✓	√ *	√ *	✓

*) when the num. of cyclic smoothings is sufficiently large.

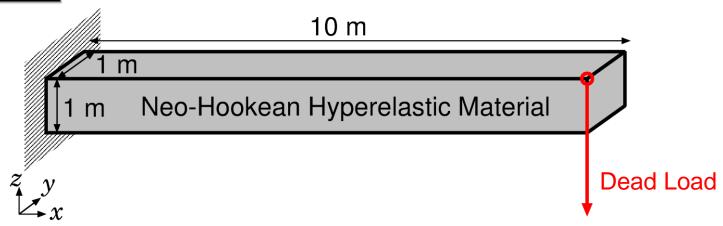
<u>Result</u> <u>of F-bar</u> <u>ES-FEM(2)</u>

50% nominal compression

Smooth
Mises stress
distribution
is obtained
except just
around the rim.



Outline



Neo-Hookean hyperelastic material

$$[T] = 2C_{10} \frac{\text{Dev}(\overline{B})}{J} + \frac{2}{D_1}(J-1)[I]$$

with a constant C_{10} (=1 GPa) and various D_1 s so that the initial Poisson's ratios are 0.49 and 0.499.

- Two types of tetra meshes: structured and unstructured.
- Compared to ABAQUS C3D4H (1st-order hybrid tetrahedral element).

