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Motivation & Background
Motivation

We want to analyze severe large 

deformation of nearly incompressible 

solids accurately and stably!
(Target: automobile tire, thermal nanoimprint, etc.)

Background

Finite elements are distorted

in a short time, thereby resulting

in convergence failure.

Mesh rezoning method

is indispensable.
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Our First Result in Advance
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What we want to do:

• Static

• Implicit

• Large deformation

• Mesh rezoning

with locking-free

T4 elements



USNCCM2015

Conventional Methods
 Higher order elements:

✗ Not volumetric locking free; Unstable in contact analysis;
No good in large deformation due to intermediate nodes.

 EAS method:

✗ Unstable due to spurious zero-energy modes.

 B-bar, F-bar and selective integration method:

✗ Not applicable to T4 mesh directly.

 F-bar patch method:

✗ Difficult to construct good patches. Not shear locking 
free.

 u/p hybrid (mixed) elements:

✗ No sufficient formulation for T4 mesh so far. 
(There are almost acceptable hybrid elements 

such as C3D4H of ABAQUS.)

 Smoothed finite element method (S-FEM):

? Unknown potential (since 2009~). It’s worth trying!!
P. 4
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Various Types of S-FEMs
 Basic type

Node-based S-FEM (NS-FEM)

 Face-based S-FEM (FS-FEM)

Edge-based S-FEM (ES-FEM)

 Selective type

Selective FS/NS-FEM

Selective ES/NS-FEM 

 Bubble-enhanced or Hat-enhanced type

 bFS-FEM, hFS-FEM

 bES-FEM, hES-FEM

 F-bar type

 F-barES-FEM
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✗ Volumetric Locking

✗ Spurious zero-energy

✗ Limitation of constitutive model,

Pressure oscillation,

Corner locking

? Unknown potential

✗ Pressure oscillation,

Short-lasting
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Objective
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Develop a new S-FEM, F-barES-FEM-T4,

by combining F-bar method and ES-FEM-T4

for large deformation problems

of nearly incompressible solids

Table of Body Contents

 Method: Formulation of F-barES-FEM-T4

& Introduction of AMG-GMRES

 Result: Verification of F-barES-FEM-T4

 Discussion: Application of AMG-GMRES

to F-barES-FEM-T4

 Summary
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Method

Formulation of F-barES-FEM-T4

& Introduction of AMG-GMRES

(F-barES-FEM-T3 in 2D is explained for simplicity.)
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Quick Review of F-bar Method

Algorithm

1. Calculate deformation gradient 𝑭 at the element center, 

and then make the relative volume change ഥ𝐽 (= det 𝑭 ).

2. Calculate deformation gradient 𝑭 at each gauss point

as  usual, and then make 𝑭iso (= 𝑭 / 𝐽1/3)  .

3. Modify 𝑭 at each gauss point as

ഥ𝑭 = ഥ𝐽 1/3 𝑭iso.

4. Use ഥ𝑭 to calculate the stress, nodal force and so on.
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F-bar method is used to avoid volumetric locking in Q4 or H8

elements. Yet, it cannot avoid shear locking.

For quadrilateral (Q4)

or hexahedral (H8)

elements
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Quick Review of ES-FEM

Algorithm:

1. Calculate the deformation gradient 𝑭 at each element as 

usual.

2. Distribute the deformation gradient 𝑭 to the connecting 

edges with area weights to make Edge𝑭 at each edge.

3. Use Edge𝑭 to calculate the stress, nodal force and so on.
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ES-FEM is used to avoid shear locking in T3 or T4

elements. Yet, it cannot avoid volumetric locking.

For triangular (T3)

or tetrahedral (T4)

elements.
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Outline of F-barES-FEM
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Concept


Edge𝑭iso is given by ES-FEM.


Edge ഥ𝐽 is given by Cyclic Smoothing (detailed later).


Edge ഥ𝑭 is calculated in the manner of F-bar method:

Edge ഥ𝑭 = Edge ഥ𝐽 1/3 Edge𝑭iso.

Combination of F-bar method and ES-FEM
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Outline of F-barES-FEM
Brief Formulation

1. Calculate Elem𝐽 as usual.

2. Smooth Elem𝐽 at nodes and get Node ෩𝐽 .

3. Smooth Node ෩𝐽 at elements and get Elem ෩𝐽 .

4. Repeat 2. and 3. as necessary (𝑐 times).

5. Smooth Elem
ሶሶሶ෩෩𝐽 at edges to make Edge ഥ𝐽 .

6. Combine Edge ഥ𝐽 and Edge𝑭iso of ES-FEM as
Edge ഥ𝑭 = Edge ഥ𝐽 1/3 Edge𝑭iso.
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Cyclic
Smoothing

of 𝐽

Hereafter, F-barES-FEM-T4 with 𝑐-time cyclic smoothing 

is called “F-barES-FEM-T4(𝑐)”.

(𝑐 layers of ~)
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Quick Introduction of AMG-GMRES
 Preconditioner: AMG 

Algebraic Multi-Grid.

A framework of stationary iterative methods.

Mainly comprised of 3 parts:

Smoothing, Restriction, and Prolongation.

Can be used as a preconditioner. 

 Solver: GMRES

Generalized Minimal RESidual.

One of the non-stationary iterative methods.

Usually used with a restart parameter r as GMRES(r).
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Result

Verification of F-barES-FEM-T4

(Analyses without mesh rezoning are presented 

for pure verification.)
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#1: Compression of a Block
Outline

 Arruda-Boyce hyperelastic material (𝜈ini = 0.499).

 Applying pressure on ¼ of the top face.

 Compared to ABAQUS C3D4H with the same 

unstructured tetra mesh.
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Load
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#1: Compression of a Block
Pressure Distribution
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ABAQUS

C3D4H

F-bar

ES-FEM-

T4(2)

Early  stage                Middle stage                     Later stage
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#1: Compression of a Block
Pressure Distribution

P. 16

Early  stage                Middle stage                     Later stage

F-bar

ES-FEM-

T4(3)

F-bar

ES-FEM-

T4(4)

In case the Poisson’s ratio is 0.499, 

F-barES-FEM-T4(2) or later resolves the pressure oscillation

issue.
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#2: Compression of 1/8 Cylinder
Outline

 Neo-Hookean hyperelastic material (𝜈ini = 0.499).

 Enforced displacement is applied to the top surface.

 Compared to ABAQUS C3D4H with the same 

unstructured tetra mesh.
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#2: Compression of 1/8 Cylinder
Result

of F-bar

ES-FEM(2)
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50% nominal

compression

Almost smooth

pressure

distribution 

is obtained

except just

around the rim. 
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#2: Compression of 1/8 Cylinder
Pressure Distribution
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ABAQUS

C3D4H

F-bar

ES-FEM-

T4(3)

F-bar

ES-FEM-

T4(4)

F-bar

ES-FEM-

T4(2)

F-barES-FEM-T4 with a sufficient cyclic smoothing

also resolves the corner locking issue.
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Discussion

Application of AMG-GMRES to F-barES-FEM-T4

P. 20
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Characteristics of [K] in F-barES-FEM-T4
 No increase in DOF.

(No Lagrange multiplier. No static condensation.)

 Positive definite.

✗ Wide in bandwidth…

In case of standard unstructured T4 meshes, 

✗ Ill-posed…

(Relatively large condition number.)

P. 21

Method Approx. Bandwidth Approx. Ratio

Standard FEM-T4 40 1

F-barES-FEM(1) 390 x10

F-barES-FEM(2) 860 x20

F-barES-FEM(3) 1580 x40

F-barES-FEM(4) 2600 x65
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Condition Number of [K]
Condition number vs. Initial Poisson’s ratio
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Increase in c does not improve the ill-posedness of [K] much…

⟹ Application of iterative solver for [K] is difficult.

In one case

of cantilever

bending with 

neo Hookean

model
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Capability of AMG-GMRES 
AMG-GMRES with

5th order Chebyshev polynomial smoother

Jacobi smoothed aggregation

Restart number is fixed at 𝑟 = 150

# of V-cycle is varied between 10 and 30.
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𝝂 = 𝟎. 𝟒𝟗 𝝂 = 𝟎. 𝟒𝟗𝟗 𝝂 = 𝟎. 𝟒𝟗𝟗𝟗

# of V-cycle = 10  ✗ ✗

# of V-cycle = 20   ✗

# of V-cycle = 30   

Increase in the # of V-cycles improves the condition number

of [K] for GMRES and helps the convergence of AMG-GMRES. 
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CPU Time of AMG-GMRES
CPU time is compared between

Direct solver:    MKL PARDISO of Intel

 Iterative solver: AMG-GMRES(150)

(Note that it is not tuned yet...)

Currently, 

AMG-GMRES is faster only when 𝜈 ≤ 0.49.

MKL PARDISO is faster when 𝜈 > 0.49.
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This is due to the increase of cost for many V-cycles

and also the lack of tuning of AMG-GMRES.

In point of speed, F-barES-FEM-T4 needs some improvements.

e.g.) finding a good sparse approximation of [𝐾],
generalization of [𝐾], and so on.
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Summary

P. 25
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Benefits and Drawbacks of F-barES-FEM-T4
Benefits

 Locking-free with 1st -order tetra meshes.

No difficulty in severe strain or contact analysis.

 No increase in DOF.

No need of static condensation;

Easy extension to dynamic explicit analysis.

Suppression of pressure oscillation

in nearly incompressible materials.

Suppression of corner locking.

Drawbacks

✗ Increase in bandwidth of the exact tangent stiffness [𝐾].
✗ Relatively large condition number of [𝐾].

P. 26

F-barES-FEM-T4 has excellent accuracy

but needs some effort for speed-up.



USNCCM2015

Conclusion
 A new FE formulation named “F-barES-FEM-T4” is

proposed.

 F-barES-FEM-T4 combines the F-bar method and

ES-FEM-T4.

Owing to the cyclic smoothing, F-barES-FEM-T4 is

locking-free and also pressure oscillation-free with

no increase in DOF.

Only one drawback of F-barES-FEM-T4 is the

decrease of calculation speed due to the increase in

bandwidth of [𝐾], which is our future work to solve.
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Thank you for your kind attention!

I appreciate your questions and comments 

in easy and slow English!
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Appendix
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Characteristics of FEM-T4s 
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Shear &

Volumetric

Locking

Zero-

Energy

Mode

Dev/Vol

Coupled

Material

Pressure 

Oscillation

Corner

Locking

Severe

Strain

Standard

FEM-T4 ✗   ✗ ✗ 

ABAQUS

C3D4H    ✗ ✗ 

Selective

S-FEM-T4   ✗ ✗ ✗ 

bES-FEM-T4

hES-FEM-T4    ✗ ✗ ✗
F-bar

ES-FEM-T4    * * 

) when the num. of cyclic smoothings is sufficiently large.*
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#2: Compression of 1/8 Cylinder
Result

of F-bar

ES-FEM(2)
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Smooth

Mises stress

distribution 

is obtained

except just

around the rim. 

50% nominal

compression
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#0: Bending of a Cantilever
Outline

 Neo-Hookean hyperelastic material

𝑇 = 2𝐶10
Dev( ത𝐵)

𝐽
+

2

𝐷1
𝐽 − 1 𝐼

with a constant 𝐶10(=1 GPa) and various 𝐷1s

so that the initial Poisson’s ratios are 0.49 and 0.499.

 Two types of tetra meshes: structured and unstructured.

 Compared to ABAQUS C3D4H (1st-order hybrid tetrahedral 

element).
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Dead Load
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#0: Bending of a Cantilever
Pressure

Distributions

P. 32

𝜈ini = 0.49 𝜈ini = 0.499

ABAQUS

C3D4H

F-bar

ES-FEM-

T4(1)

Structured

Mesh
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#0: Bending of a Cantilever
Pressure

Distributions
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𝜈ini = 0.49 𝜈ini = 0.499

F-bar

ES-FEM-

T4(2)

F-bar

ES-FEM-

T4(3)

Increase in the number of cyclic smoothing (𝑐)

makes stronger suppression of pressure oscillation.

Structured

Mesh
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#0: Bending of a Cantilever
Pressure

Distributions
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𝜈ini = 0.49 𝜈ini = 0.499

ABAQUS

C3D4H

F-bar

ES-FEM-

T4(1)

Unstructured

Mesh
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#0: Bending of a Cantilever
Pressure

Distributions
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𝜈ini = 0.49 𝜈ini = 0.499

F-bar

ES-FEM-

T4(3)

F-bar

ES-FEM-

T4(2)

No mesh

dependency

is observed.

Unstructured

Mesh


