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BackgroundBackground
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 UV imprinting is a low cost and high throughput production method.

 It has been adopted to the production of various optical devices

requiring high surface accuracy such as micro mirror array.
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IssuesIssues
 In the curing process, volume shrinkage of UV resin arises and

may cause unintended surface curvature when a soft mold such as 

PDMS is used.

 There is no numerical modeling method to reproduce this type of 

error in UV imprint, although there are a few conventional methods 

for thermal imprint.
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Brief of Conventional Method for Thermal Imprint SimulationBrief of Conventional Method for Thermal Imprint Simulation

 Thermo-viscoelastic constitutive model

 Thermal contraction is described with thermal 

expansion coefficient.

Shear behavior is described with the time-

temperature superposition principle and 

Prony series for the generalized Maxwell model.

Volumetric behavior is assumed to be independent

of strain rate and temperature.

 Numerical simulation with the finite element 

method (FEM)
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Our idea：
Similar numerical approach could be 

used for UV imprint simulation.
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ObjectiveObjective

P. 5

1. Propose a numerical method for 

UV curing process simulation.

2. Utilize the process simulation for 

mold shape optimization.
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MethodsMethods
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Overview of Our MethodOverview of Our Method
Considering the analogy of thermal and UV imprint,

Our approach uses thermo-viscoelastic material constitutive model

and replaces phenomena on UV resin as follows. 

UV reaction progress ⟹ Cooling (temperature drop)

UV shrink ⟹ Cooling contraction

UV curing ⟹ Cooling solidification

The model parameters are identified through rheology 

measurement experiments.

Numerical UV process simulation is realized as the result.
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Becomes similar to

thermal imprint simulation  
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Experimental ConditionsExperimental Conditions
 Rotational oscillatory rheometer

(Anton Paar MCR301) is used.

 The measurement object is 

an UV resin from Daicel Co..

 Room temperature is 25℃ (const.).

 UV exposure condition is constant

(30 s exposure in a constant intensity).

 The oscillation frequency is varied

from 0.1 to 10 Hz.

 The gap between the cylinder rod 

and the glass plate changes over time

due to UV shrink.

 Long time measurement is conducted

to consider the dark curing.
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Relative Gap Change (Experimental Result)Relative Gap Change (Experimental Result)
Time History of Relative Gap Change

 Note: the time history of the relative gap change is always the same in all cases 

(∵ UV exposure condition is constant).

 UV shrink progresses with time, but the shrink speed gradually decreases.
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Relative Gap Change (Model Parameter Identification)Relative Gap Change (Model Parameter Identification)
 UV shrink is modeled as thermal (cooling) contraction.

 For the UV reaction progress measure, the time history of temperature is given 

as 𝜽 𝒕 = −𝒕 . (Note that 𝜃 is not a real physical quantity but just a virtual value.)

 The time history of relative gap change is converted into the temperature-

dependent coefficient of thermal expansion.

Temperature-Dependent

Coefficient of 

Thermal Expansion
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Note: 𝛼 is negative because

it represents the volume change

compared to the initial volume.
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Viscoelasticity (Experimental Result)Viscoelasticity (Experimental Result)
Time History of Storage / Loss Shear Modulus (𝑮′/𝑮′′)

 Depending on the frequency, the time histories of 𝐺′ and 𝐺′′ are different

(harder at higher frequencies).

 At any frequency, UV resin monotonically hardens with time.
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Viscoelasticity (Model Parameter Identification 1/3)Viscoelasticity (Model Parameter Identification 1/3)
 UV resin is modeled as viscoelastic material based on the time-temperature 

superposition principle and Prony series for the generalized Maxwell model.

 A certain temperature is set as a reference temperature (e.g., 𝜃ref = −1800).

 Pick 𝐺′s and 𝐺′′s at different temperatures and identify each time shift.

Time-Shifted

Storage Shear Modulus

𝑮′ 𝝎 at 𝜽𝐫𝐞𝐟

(Master Curve)
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In practice, 𝐺′′ 𝜔 is also 

taken into consideration to 

determine the time shifts.
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Viscoelasticity (Model Parameter Identification 2/3)Viscoelasticity (Model Parameter Identification 2/3)
 A temperature-dependent shift factor (i.e., time-temperature 

superposition) is obtained by fitting the time-shifts at various 

temperatures.

Temperature-

Dependent

Shift Factor 𝑨(𝜽)
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 Find the Prony series coeffs by fitting the master curve at the reference temp.

Storage / Loss Shear Modulus at Reference Temp. Expressed by Prony Series
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From the above, the constitutive model of thermo-viscoelasticity

to simulate UV shrink and curing were identified.

Viscoelasticity (Model Parameter Identification 3/3)Viscoelasticity (Model Parameter Identification 3/3)
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Result & DiscussionResult & Discussion
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UV Curing Process Simulation (Outline)UV Curing Process Simulation (Outline)
 Commercial finite element code, ABAQUS, is adopted.

 Target pattern is a micro mirror array.

 The mold pattern is periodic and thus 

only one mirror is taken into account

with periodic boundary conditions.

 Mold cavity is filled with UV resin at the initial state.

 Temperature is given as 𝜽 𝒕 = −𝒕.

 UV exposure condition is exactly the same as 

that of the rheology measurement experiments.

(30 s exposure in a constant intensity). 

 Demolding is conducted 70 s after the end of 

UV exposure.

 Mirror curvature is evaluated 

enough after the demolding (6000 s).
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UV Curing Process Simulation (Outline)UV Curing Process Simulation (Outline)
 Commercial finite element code, ABAQUS, is adopted.

 Target pattern is a micro mirror array.

 The mold pattern is periodic and thus 

only one mirror is taken into account

with periodic boundary conditions.

 Mold cavity is filled with UV resin at the initial state.

 Temperature is given as 𝜽 𝒕 = −𝒕.

 UV exposure condition is exactly the same as 

that of the rheology measurement experiments.

(30 s exposure in a constant intensity). 

 Demolding is conducted 70 s after the end of 

UV exposure.

 Mirror curvature is evaluated 

enough after the demolding (6000 s).
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UV Curing Process Simulation (Simulation Result)UV Curing Process Simulation (Simulation Result)
Displacement Dist. in X Direction
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Deformation Scale Factor: 30 x 30 x 1 in XYZ

Sectional view 

(cut on 𝒀 plane)
Surface curvature due to the mold deformation

is observed.

3D view

Flow of UV resin due to the 

UV shrink is observed.
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UV Curing Process Simulation (Validation)UV Curing Process Simulation (Validation)
Curvature Depth Dist. on Mirror Surface
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Simulation Result
(For ease of comparison, the contour 

color scheme uses “reversed rainbow”.)

Experimental Result
(Measured with scanning probe microscope)

✔ Simulation result agreed with the experimental measurement data qualitatively. 

The maximum

curvature depth

is about 1 𝜇m

located at 

lower center

of the surface. 
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Mold Shape Optimization (Outline)Mold Shape Optimization (Outline)
Unoptimized

Mold Shape
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Mold Shape Optimization (Simulation Result)Mold Shape Optimization (Simulation Result)
Curvature Depth Dist. on Mirror Surface
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Simulation Result with Unoptimized Mold

✘ Maximum curvature depth: 1 µm

Simulation Result with Optimized Mold

✔ Maximum curvature depth: 0.01 µm

The optimized mold greatly suppressed the curvature and achieved 

a super-flat mirror surface!
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SummarySummary
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SummarySummary
 A numerical modeling method for UV shrink & curing simulation

using thermo-viscoelastic model was proposed.

 The model parameters were identified through the rheology  

measurement experiments.

 A process simulation for micro mirror array using PDMS mold 

validated the qualitative accuracy on mirror surface curvature.

 A demonstration of mold shape optimization successfully suggested 

an optimal mold shape to achieve a flat mirror surface.

Quantitative validation and application to other patterns (such as

lens arrays) are our future work.
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Limitation of Our MethodLimitation of Our Method
 UV exposure condition to simulate must be exactly the same as that 

on the rheology measurement experiments.

 The pattern size must be large enough to apply continuum 

approximation.
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Validation of Material Constitutive ModelValidation of Material Constitutive Model
Outline

 Finite element analyses using the identified thermo-viscoelastic properties to 

reproduce the rheometer measurement data is conducted. 

 For simplicity, time evolution analysis that gives shear vibration to one hexahedral 

element is performed.

 Defined thermo-viscoelastic properties are:

 Temperature-dependent coefficient of thermal expansion, 𝛼(𝜃)

 Temperature-dependent shift factor, 𝐴(𝜃)

 Prony series at reference temperature, 𝑔𝑖 (𝑖 = 1, … , 20)

 Instantaneous Young’s modulus 𝐸0 and Poisson’s ratio 𝜈0

 Field condition of temperature 𝜃 𝑡 = −𝑡 is given.

 Boundary conditions are:

 Perfect constraint on the lower surface

 Small oscillatory disp. In shear on the upper surface.
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𝜃 𝑡 = −𝑡

Small shear oscillation
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Validation of Material Constitutive ModelValidation of Material Constitutive Model
Time History of Relative Gap Change
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The relative gap change is accurately simulated.
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Validation of Material Constitutive ModelValidation of Material Constitutive Model
Time History of Storage / Loss Shear Modulus
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The storage shear modulus 𝐺′ is accurately simulated.

On the other hand, minor problem remains in the accuracy of 

the loss shear modulus 𝐺′′ because 𝐺′ ≫ 𝐺′′.
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Outline of UV Process SimulationOutline of UV Process Simulation
Step 1: Stationary (1 sec.)

Static analysis

Start no-slip & no-separation contact

Step 2: UV curing (100 sec.)

Quasi-static analysis

 Lower UV resin temperature: 𝜃 𝑡 = −𝑡

Step 3: Demolding & Dark curing (6000 sec.)

Quasi-static analysis

Remove no-slip & no-separation contact

 Lift mold upward

Continue lowering UV resin temperature: 𝜃 𝑡 = −𝑡
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Search Flow of Optimized Mold ShapeSearch Flow of Optimized Mold Shape

Forced 

Displacement

Initial mold shape Modify mold shape

①

UV process 

simulation

Get curvature data

Cost function： Squared sum of curvature depth

Optimization method: Quasi-Newton method

③ Mold shape update

②

Modify mold 

shape according 

to the curvature  

This optimization loop continues 

until the curvature after UV shrink becomes flat within tolerance.
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How to Find Optimal Mold Shape?How to Find Optimal Mold Shape?

1. Perform proposed FE analysis using 

mold shape reprecented by 𝑥𝑖
𝑛

.

2. Get nodal coordinates 𝑥𝑖
′ 𝑛

after the 

analysis.

4.  Apply forced displacement Δ𝑥𝑖
𝑛
=

− 𝛼𝑑𝑖
𝑛

to the nodes of the mold.

5. Mold shape coordinates are updated 

to 𝑥𝑖
𝑛+1

.

3. Curvature depth 𝑑𝑖
𝑛

satisfies

𝑑𝑖
𝑛
< 𝜖 ∀𝑖 ?

NO

YES

Break

loop

1.

2.

3.
4.

5.

Find nodal coordinates set of the mold 

𝒙𝟎, … , 𝒙𝑵 that minimize squared sum of 

curvature depth σ𝒊=𝟎
𝑵 𝒅𝒊

𝟐
.
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Mold Shape Optimization (Simulation Result)Mold Shape Optimization (Simulation Result)
Curvature Depth Dist. on Mirror Surface
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Simulation Result with Unoptimized Mold

✘ Maximum curvature depth: 1 µm

Simulation Result with Optimized Mold

✔ Maximum curvature depth: 0.01 µm

The optimized mold greatly suppressed the curvature and achieved 

a super-flat mirror surface!


