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Background

B UV imprinting is a low cost and high throughput production method.

M [t has been adopted to the production of various optical devices
requiring high surface accuracy such as micro mirror array.

UV Resin
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UV Exposure

& Demolding
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UV Resin Example of optical product produced by
micro imprint. (Parity Innovations Co., Ltd.)
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Issues

B In the curing process, volume shrinkage of UV resin arises and
may cause unintended surface curvature when a soft mold such as
PDMS is used.

B There is no numerical modeling method to reproduce this type of
error in UV imprint, although there are a few conventional methods

for thermal imprint. Unintended
Surface
Curvature
N\ <
Shrink Demolding
/ N
UV Resin UV Resin UV Resin BRI

Y. Onishi et al. Jpn. J. Appl. Phys.
47 5145 (2008)
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Brief of Conventional Method for Thermal Imprint Simulation
e I

B Thermo-viscoelastic constitutive model

® Thermal contraction is described with thermal
expansion coefficient.

® Shear behavior is described with the time-
temperature superposition principle and
Prony series for the generalized Maxwell model.

® \/olumetric behavior is assumed to be independent ._
of strain rate and temperature. il

B Numerical simulation with the finite element

method (FEM)
4

Tnj

G

Our idea: A

Similar numerical approach could be
_used for UV imprint simulation. )
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Objective

1. Propose a numerical method for
UV curing process simulation.

2. Utilize the process simulation for
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Methods

H B [ SEAS MNE2018

Tokyo Institute of Technology P.6



Overview of Our Method

Considering the analogy of thermal and UV imprint,

B Our approach uses thermo-viscoelastic material constitutive model
and replaces phenomena on UV resin as follows.

»UV reaction progress = Cooling (temperature drop)
»UV shrink = Cooling contraction Becomes similar to
»UV curing = Cooling solidification

thermal imprint simulation

B The model parameters are identified through rheology
measurement experiments.

Numerical UV process simulation is realized as the result.
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Experimental Conditions

B Rotational oscillatory rheometer
(Anton Paar MCR301) is used.

B The measurement object is
an UV resin from Daicel Co..

B Room temperature is 25°C (const.).

B UV exposure condition is constant
(30 s exposure in a constant intensity).

B The oscillation frequency is varied
from 0.1 to 10 Hz.

B The gap between the cylinder rod
and the glass plate changes over time Glass Plate
due to UV shrink.

B | ong time measurement is conducted

2 4
] .(7)
to consider the dark curing. |5 o|_30 s
= Ime (S

Small
Rotational Oscillation

Cylinder

Rod

UV Resin
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Relative Gap Change (Experimental Result)

Time History of Relative Gap Change
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B Note: the time history of the relative gap change is always the same in all cases
(*." UV exposure condition is constant).

B UV shrink progresses with time, but the shrink speed gradually decreases.

jll]lllllllllllll

Relative Gap Change, Ad
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Relative 6ap Change (Model Parameter Identification)
B UV shrink is modeled as thermal (cooling) contraction.

B For the UV reaction progress measure, the time history of temperature is given
as 0(t) = —t . (Note that 6 is not a real physical quantity but just a virtual value.)

B The time history of relative gap change is converted into the temperature-
dependent coefficient of thermal expansion.
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compared to the initial volume. Temparture, 8
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Viscoelasticity (Experimental Result)
Time History of Storage / Loss Shear Modulus (G'/G")
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B Depending on the frequency, the time histories of ¢’ and G"' are different
(harder at higher frequencies).

B At any frequency, UV resin monotonically hardens with time.
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Viscoelasticity (Model Parameter Identification 1/3)

B UV resin is modeled as viscoelastic material based on the time-temperature
superposition principle and Prony series for the generalized Maxwell model.

B A certain temperature is set as a reference temperature (e.g., 87 = —1800).
B Pick G's and G"’s at different temperatures and identify each time shift.

. . —— 6 =-1800 g = —60 6 =-15
Time-Shifted ) —— 6 =-300 6 =-20 —— 6 =-10 peasurement
Storage Shear Modulus 5':; 108 [ | | | | | | T Tgato = o

G (w) at 9" © 107
(Master Curve) 106

Shift for 9 = —300
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Shift for 8 = —60 7
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taken into consideration to . 10 g Shift for 8 = —10
determine the time shifts. = 102 L4 | | | | | | |
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Viscoelasticity (Model Parameter Identification 2/3)

B A temperature-dependent shift factor (i.e., time-temperature
superposition) is obtained by fitting the time-shifts at various

temperatures. +  Experiment (Shifted to 6")
Temperature- 100 —— Approximation
Dependent 10_2‘T_"-'i' L B e o
Shift Factor A(9)

Shift Factor, A
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Temperature, 6
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Viscoelasticity (Model Parameter Identification 3/3)
B Find the Prony series coeffs by fitting the master curve at the reference temp.

Storage / Loss Shear Modulus at Reference Temp. Expressed by Prony Series

+  Experiment (Shifted to 6°") +  Experiment (Shifted to 6°F)
—— Prony Series Approximation —— Prony Series Approximation
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From the above, the constitutive model of thermo-viscoelasticity

to simulate UV shrink and curing were identified.
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Result & Discussion
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UV _Curing Process Simulation (Outline)

B Commercial finite element code, ABAQUS, is adopted.

: . . 3D View

B Target pattern is a micro mirror array.
B The mold pattern is periodic and thus Mirror

only one mirror is taken into account Surface PDMS/Mold

with periodic boundary conditions. e
B Mold cavity is filled with UV resin at the initial state.
B Temperature is given as 6(t) = —t.
B UV exposure condition is exactly the same as I

that of the rheology measurement experiments. /‘/l

(30 s exposure in a constant intensity). k = |

o S
B Demolding is conducted 70 s after the end of UV Resin
320 um

B Mirror curvature is evaluated
enough after the demolding (6000 s).
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UV _Curing Process Simulation (Outline)

B Commercial finite element code, ABAQUS, is adopted.

Demolding | 2D View

B Target pattern is a micro mirror array. No-slip &

B The mold pattern is periodic and thus No-separation
only one mirror is taken into account Contact
with periodic boundary conditions.

B Mold cavity is filled with UV resin at the initial state.
B Temperature is given as 6(t) = —t.

B UV exposure condition is exactly the same as
that of the rheology measurement experiments.
(30 s exposure in a constant intensity).

B Demolding is conducted 70 s after the end of

PDMS Mold

UV Resin

o(t) = —t

UV exposure. L
B Mirror curvature is evaluated Xperiodic Boundary

enough after the demolding (6000 s). Condition
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UV _Curing Process Simulation (Simulation Result)

Displacement Dist. in X Direction Deformation Scale Factor: 30 x 30 x 1 in XYZ

e: 6

U, Ut 000

+9.547e-07
+8.120e-07
+6.693e-07

+5.266e-07
+3.839e-07
+2.412e-07
+9.855e-08
-4.414e-08
-1.868e-07

=N
-3.295e-07
-4.722e-07
-6.149e-07
-7.576e-07

Z

3D view (cut on Y plane)
Surface curvature due to the mold deformation Flow of UV resin due to the
IS observed. UV shrink is observed.
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UV _Curing Process Simulation (Validation)

Curvature Depth Dist. on Mirror Surface
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curvature depth %7
is about 1 um
located at
lower center
of the surface.

A 1323742 um
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o Coordinate, x (um)
Experimental Result Simulation Result

(Measured with scanning probe microscope) (For ease of comparison, the contour
color scheme uses “reversed rainbow”.)

v Simulation result agreed with the experimental measurement data qualitatively.
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Mold Shape Optimization (Outline)

PDMS Mold

\l/

Shrink

7N

Unoptimized PDMS Mold

X Curvature!

Mold Shape

UV Exposure

PDMS Mold PDMS Mold

v Lesser Curvature!

After Mold |
Optimization NN /
UV Exposure Shrink
7NN

UV Resin UV Resin
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Mold Shape Optimization (Simulation Result)

Curvature Depth Dist. on Mirror Surface

400 . 1 400 1
0.9 _ 0.9 _
g g
- 08 § = 08 §
5300 107 o 5300 107 o
N 06 £ ~ 06 2
g 105 é g 105 é
B 200 1% B 200 %4 <
] -10.3 .5 ) -1 0.3 ,5
“ 02 § © 02 &
|0.1 |0.1
100 HELT . 0 100 ¢ il
~100 0 100 ~100 0 100
] ) Coordinate, x (um) Coordinate, x (um)
Simulation Result with Unoptimized Mold
X Maximum curvature depth: 1 um v Maximum curvature depth: 0.01 pm

The optimized mold greatly suppressed the curvature and achieved
a super-flat mirror surface!

MNE2018

P. 21



Summary
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Summary

B A numerical modeling method for UV shrink & curing simulation
using thermo-viscoelastic model was proposed.

B The model parameters were identified through the rheology
measurement experiments.

B A process simulation for micro mirror array using PDMS mold
validated the qualitative accuracy on mirror surface curvature.

B A demonstration of successfully suggested
an optimal mold shape to achieve a flat mirror surface.

B Quantitative validation and application to other patterns (such as
lens arrays) are our future work.
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Limitation of Our Method

B UV exposure condition to simulate must be exactly the same as that
on the rheology measurement experiments.

B The pattern size must be large enough to apply continuum
approximation.
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Validation of Material Constitutive Model

Outline

B Finite element analyses using the identified thermo-viscoelastic properties to
reproduce the rheometer measurement data is conducted.

B For simplicity, time evolution analysis that gives shear vibration to one hexahedral

element is performed. -
_ _ _ _ Small shear oscillation
B Defined thermo-viscoelastic properties are: (——

® Temperature-dependent shift factor, A(0) \ J ! !
® Prony series at reference temperature, g; (i = 1, ..., 20) \ B \ !
® Instantaneous Young’s modulus E° and Poisson’s ratio v° Ve =t

B Field condition of temperature 6(t) = —t is given. Vo v | !
1
B Boundary conditions are: \ i

e e e e worsuracs.
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Validation of Material Constitutive Model

Time History of Relative Gap Change
----- Exp. — FEM
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I The relative gap change is accurately simulated. |
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Validation of Material Constitutive Model
Time History of Storage / Loss Shear Modulus
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The storage shear modulus G’ is accurately simulated.
On the other hand, minor problem remains in the accuracy of
the loss shear modulus G’ because G’ > G"'.
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Outline of UV Process Simulation

Step 1: Stationary (1 sec.) _ Displacement 400pm
® Static analysis \ No-slip &
o-separation
® Start no-slip & no-separation contact contact

Step 2: UV curing (100 sec.) PDMS Mold
® Quasi-static analysis
® Lower UV resin temperature: 6(t) = —t

Step 3: Demolding & Dark curing (6000 sec.)
® Quasi-static analysis
® Remove no-slip & no-separation contact

UV Resin
® Lift mold d O() =~ °C
ft mold upwar -
® Continue lowering UV resin temperature: 6(t) = —t LX

_ : Periodic boundary
ABAQUS/Standard C3D8 is used for FE analysis. condition
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Search Flow of Optimized Mold Shape

Cost function: Squared sum of curvature depth
Optimization method: Quasi-Newton method

Initial mold shape Get curvature data Modify mold shape
PDMS Mold PDMS Mold PDMS Mold
3 &
UV process \S‘hrin’k/ Modify mold
simulation PR shape according
IV et UV Resin to the curvature ——

This optimization loop continues

until the curvature after UV shrink becomes flat within tolerance.
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How to Find Optimal Mold Shape?

Find nodal coordinates set of the mold

1. Perform proposed FE analysis using  {x, ..., xy} that minimize squared sum of

mold shape reprecented by xi("). curvature depth ZI'V o||d'||2
1= l -

‘ After Before
2. Get nodal coordinates x; ™ after the Modified ~ Shrinkage Aft
: (n+1)@ = or
analysis. TN 1 AL Shrinkage
i ()
3. Curvature depth d\" satisfies YES : N
(n) -
d;” <eVi? x(n-l-l)! 4
INno B SreT
_ (n) Y sz 7(n)
4. Apply forced displacement Ax; ™~ = 5 " L
— ad™ to the nodes of the mold. ' ",‘ 2
¢‘ "
‘, 2 hS W,
5. Mold shape coordinates are updated | Break x(()”ﬂ{)eferemem(n) Lo
tO xi(n+1). IOOp T—’ZE Node 0 Addiéional

Line
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Mold Shape Optimization (Simulation Result)

Curvature Depth Dist. on Mirror Surface
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[ -1.49116e-04

COORD, COORZ2
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.
Simulation Result with Unoptimized Mold Simulation Result with Optimized Mold
X Maximum curvature depth: 1 um v Maximum curvature depth: 0.01 ym

The optimized mold greatly suppressed the curvature and achieved

a super-flat mirror surface!
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