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Motivation
What we want to do:

 Solve hyper large deformation

analyses accurately and stably.

 Treat complex geometries 

with tetrahedral meshes.

 Consider nearly incompressible materials (𝝂 ≃ 𝟎. 𝟓).

 Support contact problems.

 Handle auto re-meshing.

P. 2
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Issues
Conventional tetrahedral (T4/T10) FE formulations

still have issues in accuracy or stability

especially in nearly incompressible cases.
 2nd or higher order elements:

✗ Volumetric locking.

Accuracy loss in large strain due to intermediate nodes.

 B-bar method, F-bar method, Selective reduced integration:

✗ Not applicable to tetrahedral element directly.

 F-bar-Patch method:

✗ Difficulty in building good-quality patches.

 u/p mixed (hybrid) method:

(e.g., ABAQUS/Standard C3D4H and C3D10MH)

✗ Pressure checkerboarding, Early convergence failure etc..

 F-bar type smoothed FEM (F-barES-FEM-T4):

 Accurate & stable   ✗ Hard to implement in FEM codes.
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Issues (cont.)
E.g.) Compression of neo-Hookean hyperelastic body with 𝜈ini = 0.49
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1st order hybrid T4 (C3D4H)

 No volumetric locking

✗ Pressure checkerboarding

✗ Shear & corner locking

2nd order modified hybrid T10 (C3D10MH)

 No shear/volumetric locking

✗ Early convergence failure

✗ Low interpolation accuracy

# of Nodes is 

almost the same.

Pressure Pressure
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Issues (cont.)
E.g.) Compression of neo-Hookean hyperelastic body with 𝜈ini = 0.49
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F-barES-FEM-T4

 No shear/volumetric locking

 No corner locking

 No pressure checkerboarding

Same mesh

as C3D4H

case.

Pressure

Although

F-barES-FEM-T4 is 

accurate and stable,

✗ it cannot be 

implemented in 

general-purpose

FE software 

due to the adoption 

of ES-FEM.

Another approach

adopting CS-FEM 

with T10 element 

would be effective.
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Objective
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To propose an accurate and stable

CS-FEM-T10, “SelectiveCS-FEM-T10”,

and to implement it into 

general-purpose FE software.

Table of Body Contents

 Formulation of SelectiveCS-FEM-T10

 Demonstrations of SelectiveCS-FEM-T10

 Implementation of SelectiveCS-FEM-T10

into ABAQUS

 Summary
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Formulation of
SelectiveCS-FEM-T10
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Brief Review of Edge-based S-FEM (ES-FEM)

 Calculate [𝐵] at each element as usual.

 Distribute [𝐵] to the connecting edges with area weight

and build [ Edge𝐵] .

 Calculate 𝑭, 𝑻, 𝑓int etc. in each edge smoothing domain.
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As if putting 

an integration point

on each edge center

ES-FEM can avoid shear locking.

However,

it cannot be implemented in 

ordinary FE codes due to the 

strain smoothing across

multiple elements...
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(1) Subdivision into T4 Sub-elements

 Put a dummy node (10) at the mean location of 6 mid-nodes.

 Subdivide a T10 element into twelve T4 sub-elements and 

calculate their B-matrices and strains.
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The shape function

should not be quadratic

in large deformation analyses.

Same as

J.T.Ostien’s method.

(IJNME, v107, 2016)
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(2) Deviatoric Strain Smoothing

 Perform strain smoothing in the manner of  ES-FEM

(i.e., average dev. strains of sub-elements at edges).  Then…
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T4 sub-elements cause

shear locking and thus

strain smoothing is

necessary.

From 12 sub-elements

to 30 edges
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(2) Deviatoric Strain Smoothing
(cont.)

 Perform one more strain smoothing in the reverse direction

(i.e., average dev. strains of edges at sub-elements), which is

so to speak (ES-FEM)-1.
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ES-FEM does not smooth

the strain at frame edges.

Thus one more smoothing

is necessary.

From 30 edges

to 12 sub-elements
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(3) Volumetric Strain Smoothing

 Treat the overall mean vol. strain of all sub-elements 

as the uniform element vol. strain (i.e., same approach as 

SRI elements).
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The spatial order of 

vol. strain should be 

lower than that of 

dev. strain to avoid

volumetric locking.
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(4) Combining with SRI Method

 Apply SRI method to combine the Dev. & Vol. parts

and obtain {𝑓int} and [𝐾].
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Deviatoric

Volumetric

Internal force 𝑓int

Stiffness [𝐾]
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Flowchart of SelectiveCS-FEM
Explanation in 2D (6-node triangular element) for simplicity
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(1) Subdivision with

a dummy node

(2) Dev. strain smoothing with edges and sub-elements

(3) Vol. strain smoothing with all sub-elements

(4) 𝑓int and [𝐾]

(ES-FEM)-1
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Demonstration of
SelectiveCS-FEM-T10
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Barreling of Hyperelastic Cylinder
Outline

 Enforce axial displacement on the top face.

 Neo-Hookean body with 𝜈ini = 0.49．

 Compare results with ABAQUS T10 hybrid elements 

(C3D10H, C3D10MH, C3D10HS) using the same mesh.
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Barreling of Hyperelastic Cylinder
Animation

of

Mises

stress

(ABAQUS

C3D10MH)
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Convergence

failure at 24%

compression

Unnaturally

oscillating

distributions

are obtained

around

the rim.
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Barreling of Hyperelastic Cylinder
Animation

of

Mises

stress

(Selective

CS-FEM-T10)
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Convergence

failure at 47%

compression

Smooth

distributions

are obtained

except around

the rim.

The 

present

element

is more

stable

than

ABAQUS

C3D10MH
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Barreling of Hyperelastic Cylinder
Comparison of Mises stress at 24% comp.
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Selective

CS-FEM-T10

ABAQUS

C3D10MH

ABAQUS

C3D10HS

ABAQUS

C3D10H

All results are similar to each other

except around the rim having stress singularity.
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Barreling of Hyperelastic Cylinder
Comparison of pressure at 24% comp.
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Selective

CS-FEM-T10

ABAQUS

C3D10MH

ABAQUS

C3D10HS

ABAQUS

C3D10H

All results are similar to each other

except around the rim having stress singularity.
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Barreling of Hyperelastic Cylinder
Comparison of nodal reaction force at 24% comp.
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Selective

CS-FEM-T10

ABAQUS

C3D10MH

ABAQUS

C3D10HS

ABAQUS

C3D10H

ABAQUS C3D10H and C3D10HS 

suffer from nodal force oscillation.
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Barreling of Hyperelastic Cylinder
Comparison of pressure at 47% comp.
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SelectiveCS-FEM-T10 ABAQUS C3D8

The present element has competitive accuracy and stability

as much as H8-SRI element.

# of nodes are 

about 60k in both.

Conv.

failure

at 50%

comp.
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Implementation of
SelectiveCS-FEM-T10

into ABAQUS
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Brief of ABAQUS UEL
 ABAQUS has functionality of “user-defined element” 

(simply called “UEL”).

 UEL is usually written in Fortran77, but in fact it can 

be written in Fortran90.

 Coding a subroutine named “UEL” and compiling it, 

one can execute ABAQUS 

using one’s own element:

%  abaqus job=test   user=my_uel.o

 Analysis results can be visualized on ABAQUS 

Viewer by defining overlap elements with zero 

stiffness in the “inp” file. 
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Results of ABAQUS UEL
Comparison of

Mises stress

(24% comp.)
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Selective

CS-FEM-T10

of in-house code

Selective

CS-FEM-T10

of ABAQUS UEL

Well

agreed

with

in-house

code.

Small

difference 

comes

form the

difference

of mapping

calculation.
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Results of ABAQUS UEL
Comparison of

pressure

(24% comp.)
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Selective

CS-FEM-T10

of in-house code

Selective

CS-FEM-T10

of ABAQUS UEL

Well

agreed

with

in-house

code.

Small

difference 

comes

form the

difference

of mapping

calculation.
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Issues in ABAQUS UEL
We have to define the overlap elements

 to visualize the results with ABAQUS Viewer.

 to define element-based surface

for pressure loading, contact pair definition etc..

 The overlap elements cause convergence failure in 

large deformation analysis.
i.e., the cylinder barreling analysis stops at 24% compression 

when the overset elements are defined.
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Native implementation is essential for the full use

of SelectiveCS-FEM-T10, unfortunately…
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Summary
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Summary of SelectiveCS-FEM-T10
Benefits

 Locking-free.

 No pressure checkerboarding.

 No nodal force oscillation.

 No increase in DOF.

 Long lasting in large deformation.

 Same CPU cost as the standard T10 elements.

Drawbacks

✗ No longer a T4 formulation.

Take-home message

Please consider implementing SelectiveCS-FEM-T10 to 

your in-house code. It’s supremely useful & easy to code!!
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Thank you for your kind attention!


