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Motivation
What we want to do:

B Solve hyper large deformation
analyses accurately and stably.

B Treat complex geometries
with tetrahedral meshes.

B Consider nearly incompressible materials (v ~ o0.5).
B Support contact problems.

B Handle auto re-meshing.
w
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Issues

Conventional tetrahedral (T4/T10) FE formulations
still have Issues Iin accuracy or stability

especially in nearly incompressible cases.

B 2"d or higher order elements:
X Volumetric locking.
Accuracy loss in large strain due to intermediate nodes.
B B-bar method, F-bar method, Selective reduced integration:
X Not applicable to tetrahedral element directly.
B F-bar-Patch method:
X Difficulty in building good-quality patches.
B u/p mixed (hybrid) method:
(e.g., ABAQUS/Standard C3D4H and )
X Pressure checkerboarding, Early convergence failure etc..
B F-bar type smoothed FEM (F-barES-FEM-T4).

v Accurate & stable X Hard to implement in FEM codes
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Issues (cont.)
E.g.) Compression of neo-Hookean fiyperelastic body with v;,; = 0.49

Pressure Pressure
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[
— +1.333e+09

of Nodes is
almost the same.

1st order hybrid T4 (C3D4H) 2" order modified hybrid T10 ( )
v" No volumetric locking v" No shear/volumetric locking

X Pressure checkerboarding X Early convergence failure

X Shear & corner locking X Low interpolation accuracy
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Issues (cont.)

E.g.) Compression of neo-Hookean fyyperelastic body with v;,; = 0.49

+1.000e+10y
18.917@109 =
17.833109

16,750e109
15,667m109

[ = | Athouh
[ /5 F-barES-FEM-T4is
“ accurate and stable,
X it cannot be
Implemented in
general-purpose
FE software
due to the adoption

of ES-FEM.

T

F-barES-FEM-T4 Another approach
v" No shear/volumetric locking adopting CS-FEM
v" No corner locking with T10 element
v" No pressure checkerboarding would be effective.

Qo
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Same mesh
as
case.
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. Objective

To propose an accurate and stable
CS-FEM-T10, “SelectiveCS-FEM-T107,

and to implement it into
general-purpose FE software.

Table of Body Contents
> Formulation of SelectiveCS-FEM-T10
» Demonstrations of SelectiveCS-FEM-T10

» Implementation of SelectiveCS-FEM-T10
iInto ABAQUS

> Summary
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Formulation of
SelectiveCS-FEM-T10
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Brief Review of Edge-based S-FEM (ES-FEM)

B Calculate [B] at each element as usual.
B Distribute [B] to the connecting edges with area weight
and build [ Ed8ep] .

B Calculate F,T,{f"} etc. in each edge smoothing domain.

As if putting
an integration point
on each edge center

ES-FEM can avoid shear locking.
However,
it cannot be implemented in
ordinary FE codes due to the
strain smoothing across
multiple elements...
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(1) Subdivision into T4 Sub-elements

The shape function
should not be quadratic
In large deformation analyses.

-
-
-

Same as
J.T.Ostien’s method.
(IJINME, v107, 2016)

B Put a dummy node (10) at the mean location of 6 mid-nodes.
B Subdivide a T10 element into twelve T4 sub-elements and

calculate their B-matrices and strains.
ICCM2018
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(2) Deviatoric Strain Smoothing

T4 sub-elements cause
shear locking and thus

strain smoothing is
necessary.

From 12 sub-elements
to 30 edges

B Perform strain smoothing in the manner of ES-FEM
(l.e., average dev. strains of sub-elements at edges). Then...
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(2) Deviatoric Strain Smoothing
(cont.)

ES-FEM does not smooth
the strain at frame edges.
Thus one more smoothing
IS necessary.
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From 30 edges
to 12 sub-elements

B Perform one more strain smoothing in the reverse direction
(i.e., average dev. strains of edges at sub-elements), which is

SO to speak (ES-FEM).
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(3) Volumetric Strain Smoothing

The spatial order of
vol. strain should be
lower than that of
dev. strain to avoid
volumetric locking.
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B Treat the overall mean vol. strain of all sub-elements
as the uniform element vol. strain (i.e., same approach as
SRI elements)
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___(4) Combining with SRI Method

Deviatoric

— =
- -
-

® Internal force {f"t}
® Stiffness [K]

Volumetric

-
_.__—-"
—

B Apply SRI method to combine the Dev. & Vol. parts
and obtain {f"t} and [K].
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Flowchart of SelectiveCS-FEM

Explanation in 2D (6-node triangular element) for simplicity

(ES-FEM)1

(2) Dev. strain smoothing with edges and sub-elements

S
(1) Subdivision with 0? Ver, y ’5’/

a dummy node San

(4) {f ™t} and [K]

(3) Vol. strain smoothing with all sub-elements
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Demonstration of
SelectiveCS-FEM-T10
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_Barreling of Hyper'elas'rlc Cylinder

Qutline

oy = Uy =0

im
Enforced
Displacement

. Perfectly
7 Constrained

B Enforce axial dlsplacement on the top face.
B Neo-Hookean body with v;,; = 0.49.

B Compare results with ABAQUS T10 hybrid elements
(C3D10H, C3D10MH, C3D10HS) using the same mesh.
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Barreling of Hyper'elas‘hc Cylmder'

Anvmawon S, Mises T-:-::_L T]r: _______ o000
(Avg 75%)
Of +1.808e+10
Al +1.000e+10
Mi [ g it
+8. e
MISEeS 45 2000r09
+6.667e+09
5.833e+09
Stress 15.0002109
. s | B
_(r"\ D"rl‘\ (_)( > b %:5002109
+

C3D10MH)

Convergence
failure at 24%
compression

Unnaturally
oscillating
distributions
are obtained -

'
around k

the rim.
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Barreling of Hyperelastic Cylinder

Animation [13:2232133

of g
Mises e
swess gL
(Selective = 18 3330008
CS_FEM_TIO) +0.000e+00
Convergence
failure at 47%
compression The
present
element
Smooth is more
distributions stable
are obtained 2 than
except around ABAQUS
the rim. C3D10MH
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Barreling of Hyperelastic Cyl
Comparison of Mises stress at 24% comp.

+1.000e+10
+9.167e+09
+8.333e+09
—+7.500e+09
—+6.667e+09
.833e+09
.000e+09

- o
S, Mises LSRN, Aé}"ﬁ)& S, Mises
(Avg: 75%) “V : 4 X

.950e+10 Sk ~. 2 .009e+11

-000e+10 :

.167e+09 TN

AN
Tu0p

4

o '. 1

"ﬂbg X
V*A%iﬁh
B
m\'ﬂ

i
55

adl
‘ %i;

i
dada
i

AYAT.

AN,
AAARAN
AR
'&' e

AN
i
W
D)

i)
' N
i’é’;uv
: ,g\\vmgg
1/
4,
Ak
o
SV
il
A
7

iy
Wl
N
£

;

i

Ye
i
A

2y

X
by

=

4

7
g

T

R
i\»,“ga m\gv AN ) K
“é;: X

7P,

G

£ ‘,;"A:
7N

Selective ABAQUS ABAQUS
CS-FEM-T10 C3D10H C3D10HS

All results are similar to each other
except around the rim having stress singularity.
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Barreling of Hyperelastic Cylinder

Comparison of nodal reaction force at 24% comp.

BF, Magnitude RF, Magnitude

RF, Magnitude
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ABAQUS C3D10H and C3D10HS
suffer from nodal force oscillation.
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Implementation of
SelectiveCS-FEM-TI10
info ABAQUS
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Brief of ABAQUS UEL

B ABAQUS has functionality of “user-defined element”
(simply called “UEL").

B UEL is usually written in Fortran77, but in fact it can
be written in Fortran90.

B Coding a subroutine named “UEL” and compiling it,
one can execute ABAQUS
using one’s own element:

% abaqus |job=test user=my uel.o

B Analysis results can be visualized on ABAQUS
Viewer by defining with zero
stiffness in the “Iinp” file.
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Results of ABAQUS UEL

Comparison of

UVARMI1
(Avg: 75%)

Mises stress
(24% comp.)
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Issues in ABAQUS UEL
B \We have to define the
® to visualize the results with ABAQUS Viewer.
® t0 define element-based surface
for pressure loading, contact pair definition etc..
B The cause convergence failure in

large deformation analysis.
l.e., the cylinder barreling analysis stops at 24% compression
when the overset elements are defined.

Native implementation is essential for the full use
of SelectiveCS-FEM-T10, unfortunately...
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Summary
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Summary of SelectiveCS-FEM-T10
Benefits

v Locking-free.

v No pressure checkerboarding.

v" No nodal force oscillation.

v" No increase in DOF.

v Long lasting in large deformation.

v" Same CPU cost as the standard T10 elements.
Drawbacks

X No longer a T4 formulation.
Take-home message

Please consider implementing SelectiveCS-FEM-T10 to
your in-house code. It’s supremely useful & easy to code!!

I Thank you for your kind attention! |
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