F-bar aided edge-based smoothed finite element methods with 4-node tetrahedral elements for static large deformation hyperelastic and elastoplastic problems

> Yuki ONISHI, Ryoya IIDA, Kenji AMAYA Tokyo Institute of Technology, Japan

Motivation

<u>Motivation</u>

We want to accurately and stably analyze **severe large deformation** of solids in **any shape** with finite elements.

<u>Issues</u>

- Only tetra mesh is available for arbitrary body shape.
- The standard 1st / 2nd order tetrahedral element are poor especially when incompressibility is present. Also, all the other u/p hybrid tetrahedral elements (e.g., C3D4H, C3D10MH in ABAQUS) have some issues:
 - pressure oscillation,
 - early convergence failure, etc.

Researches on FE formulations for 1st order tetra (T4) are still active especially for rubber-like or elasto-plastic materials.

An Example for Rubber-like Material

Material: neo-Hookean hyperelastic, $v_{ini} = 0.49$

1st order hybrid T4 (C3D4H)

- ✓ No shear/volumetric locking
- X Pressure oscillation
- X Corner locking

2nd order modified hybrid T10 (C3D10MH)

- ✓ No shear/volumetric locking
- X Low interpolation accuracy
- X Early convergence failure

Pressure

.000e+09

An Example for Rubber-like Material

Material: neo-Hookean hyperelastic, $v_{ini} = 0.49$

ICCM2016

P. 4

of Nodes is exactly the same as the C3D4H case.

Selective ES/NS-FEM-T4

- ✓ No shear/volumetric locking
- X Pressure oscillation
- X Corner locking

Selective ES/NS-FEM-T4 is not bad as ABAQUS C3D4H. Yet, it still has major issues...

Objective

Propose a new type of S-FEM, F-barES-FEM-T4,

to resolve the pressure oscillation and the corner locking issues

in hyperelastic and elastoplastic materials.

Table of Body Contents

- Methods: Quick introduction of F-barES-FEM-T4
- Results: A few example analyses
- Summary

<u>Methods</u>

Quick introduction of F-barES-FEM-T4 (F-barES-FEM-T3 in 2D is explained for simplicity.)

Quick Review of Node-based S-FEM (NS-FEM)

For triangular (T3) or tetrahedral (T4) elements.

<u>Algorithm:</u>

- 1. Calculate the deformation gradient at each element, ^{Elem}*F*, as usual.
- 2. Distribute $E^{\text{lem}}F$ s to the connecting nodes with area weights to make $N^{\text{ode}}\widetilde{F}$ at each node.
- 3. Use $\operatorname{Node} \widetilde{F}$ s to calculate the stress, nodal force and so on.

NS-FEM avoids shear & volumetric locking in T3/T4 elements and also alleviates pressure oscillation. Yet, it suffers from spurious low-energy modes, corner locking and minor pressure oscillation....

Quick Review of Edge-based S-FEM (ES-FEM)

For triangular (T3) or tetrahedral (T4) elements.

<u>Algorithm:</u>

- 1. Calculate the deformation gradient at each element, ^{Elem}*F*, as usual.
- 2. Distribute $E^{\text{lem}}F$ s to the connecting edges with area weights to make $E^{\text{dge}}\widetilde{F}$ at each edge.
- 3. Use $E^{dge}\tilde{F}$ s to calculate the stress, nodal force and so on.

ES-FEM avoids shear locking in T3/T4 elements. Yet, it suffers from volumetric locking, corner locking, and major pressure oscillation...

Quick Introduction of F-barES-FEM

Concept: combine ES-FEM and NS-FEM using F-bar method

Outline of F-barES-FEM

Brief Formulation

- 1. Calculate Elem J as usual.
- 2. Smooth ^{Elem} J at nodes and get ^{Node} \tilde{J} .
- 3. Smooth ^{Node} \widetilde{J} at elements and get ^{Elem} \widetilde{J} .
- 4. Repeat 2. and 3. as necessary (*c* times).
- 5. Smooth Elem $\tilde{\tilde{J}}$ at edges to make $E^{dge}\overline{J}$.
- 6. Combine $E^{dge}\overline{J}$ and $E^{dge}F^{iso}$ of ES-FEM as $E^{dge}\overline{F} = E^{dge}\overline{J}^{1/3} E^{dge}F^{iso}$.

Hereafter, F-barES-FEM-T4 with *c* cycles of smoothing is called "F-barES-FEM-T4(*c*)".

A kind of

low-pass filter

for *J*

Cyclic

Smoothing

of J

Additional Point of F-barES-FEM

Typical Flow of FE Solver

Selective ES/NS-FEM splits T into T^{hyd} and T^{dev} and merges $\{f_{hyd}^{int}\}$ and $\{f_{dev}^{int}\}$ into $\{f^{int}\}$.

■ F-barES-FEM

builds F^{vol} and F^{iso} separately and combines F^{vol} and F^{iso} into F.

> F-barES-FEM can handle any kind of material constitutive model.

<u>**Results</u>** A few example analyses</u>

Compression of Rubber Block

- Applying pressure on ¼ of the top face.
- Compared to ABAQUS C3D4H with the same unstructured T4 mesh.

Compression of Rubber Block

Pressure Distribution

Pursuina Excellence

Compression of Rubber Block

Pressure Distribution

Tokyo Institute of Technology

F-barES-FEM-T4 resolves the pressure oscillation issue!

P. 15

ΤΟΚΥΟ ΤΕΕΗ

Pursuina Excellence

Barreling of 1/8 Rubber Cylinder

• Neo-Hookean hyperelastic material ($v_{ini} = 0.499$).

- Enforced displacement is applied to the top surface.
- Compared to ABAQUS C3D4H with the same unstructured T4 mesh.

Barreling of 1/8 Rubber Cylinder

<u>Result</u> <u>of F-bar</u> <u>ES-FEM(2)</u> (Pressure)

50% nominal compression

Almost smooth pressure distribution is obtained except just around the rim.

Barreling of 1/8 Rubber Cylinder Pressure Distribution

F-barES-FEM-T4 with a sufficient cyclic smoothing resolves the corner locking issue!

Elasto-plastic material:

- Hencky elasticity with E = 1 GPa and v = 0.3.
- Isotropic von Mises yield criterion with $\sigma_{\rm Y} = 1$ MPa and H = 0.1 GPa (constant).
- Blue face is perfectly constrained.
- Red face is constrained in plane and pressed down.
- Compared to ABAQUS C3D4H with the same unstructured T4 mesh.

ΤΟΚ

YD TECH

Pursuina Excellence

Equivalent Plastic Strain

Equivalent Plastic Strain

Accuracy of equivalent plastic strain seems no much different.

F-barES-FEM-T4 is pressure oscillation free in elastoplastic analysis.

3 k nodes & 14 k elems.

[Aluminium] Hencky elasticity: E = 70 GPa, $\nu = 0.3$. Isotropic von Mises plasticity: $\sigma_{\rm Y} = 100$ MPa , H = 0.7 GPa (const.), (c = 2)

- Bottom face is perfectly constrained.
- Top face is constrained in the plane and twisted 360 deg. around the vertical axis.
- Calculated by F-barES-FEM-T4 only. (Just a demo.)
- Multiple Fs at edges on the material interface.

P. 27

Tokyo Institute of Technology

<u>Summary</u>

Benefits and Drawbacks of F-barES-FEM-T4

<u>Benefits</u>

- Locking-free with 1st order tetra meshes.
 No difficulty in severe strain or contact analysis.
- ✓ No increase in DOF.

Purely displacement-based formulation.

- ✓ No restriction of material constitutive model. Pressure dependent models are acceptable.
- ✓ Less corner locking and pressure oscillation.

More accurate than Selective ES/NS-FEM!

<u>Drawbacks</u>

The more cyclic smoothing necessitates the more CPU time due to the wider bandwidth.

Slower than Selective ES/NS-FEM...

FYI

If you are interested in F-barES-FEM-T4, please refer to the following paper:

"F-bar aided edge-based smoothed finite element method using tetrahedral elements for finite deformation analysis of nearly incompressible solids, *International Journal for Numerical Methods in Engineering (IJNME)*, Jul. 2016.

Thank you for your kind attention!

