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(1)Being applied to 4-noded Tet (T4) elements

(2)Stability even in Nearly incompressible materials

(3)Being directly applied to Explicit Dynamics

Goal and Requirements
Goal

To analyze large deformation dynamic problems 

for rubber-like materials

For such analysis, these 3 properties are required. 
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Requirements (1 of 3): T4 elements
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Arbitrary shapes cannot be meshed 

into good-quality Hex elements automatically.

 Intermediate nodes cause bad-accuracy

in Large deformation problem.

 First-order Tet elements (T4) are preferred for such analysis.

✗

✔
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Requirements (2 of 3): Stability for rubber-like materials
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In FE analysis for rubber-like materials,

Pressure oscillation & Locking easily arise.

Reference 

solution

Standard T4 elements

✗pressure oscillation

✗shear & volumetric locking

Poisson’s ratio: 0.499
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Requirements (3 of 3): Explicit dynamics
2 types of time integration scheme

1. Implicit is suitable for long-term problems

2. Explicit is suitable for short-term problems
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 u/p hybrid formulations cannot be easily applied to 

explicit dynamics.

General methods of explicit dynamics

for rubber like materials have not been established !

 The advantage of S-FEM is to be directly applied to 

explicit dynamics
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Objective
Objective

To evaluate the performance of competitive S-FEMs

 Selective ES/NS-FEM

 F-barES-FEM

in explicit dynamics for nearly incompressible materials.

Table of Body Contents

 Methods: Quick introduction of S-FEMs

 Results & Discussion: A few verification analyses

 Summary
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Methods
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Selective ES/NS-FEM 

F-barES-FEM
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Quick review of S-FEM
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Integration area

Element

Node

Smoothed-FEM (S-FEM)

ES-FEM sums up each Edge values.

✔ High accuracy in isovolumetric part

without shear locking

Standard FEM
Nodal forces are calculated 

by summing up of 

each elements’

NS-FEM sums up each Node values.

✔ High accuracy in volumetric part

with little pressure oscillation
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Selective ES/NS-FEM (1 of 2)
Cauchy stress tensor 𝑻 is derived as
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𝑻 = 𝑻dev + 𝑻hyd
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Selective ES/NS-FEM (2 of 2)

P. 10

Like a ES-FEM

1. Shear locking free

Like a NS-FEM

2. Little pressure oscillation

3. Volumetric locking free

Deviatoric part Hydrostatic-pressure part

𝑻 = 𝑻dev + 𝑻hyd
This formulation is designed to have 3 advantages.
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F-barES-FEM (1 of 3)
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ES-FEM

ഥ𝑭 = ෩𝑭iso ∙ ഥ𝑭vol
Deformation gradient of each edge, ഥ𝑭 is 

derived as
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F-barES-FEM (2 of 3)
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Each part of ഥ𝑭 is calculated as

(1)

Isovolumetric part

Smoothing the value of 

adjacent elements.

↓

The same manner as

ES-FEM

(1)Calculating node’s value by smoothing 

the value of adjacent elements

(2)Calculating elements’ value by smoothing 

the value of adjacent nodes

(3)Repeating (1) and (2) a few times

(2)

Volumetric part

ഥ𝑭 = ෩𝑭iso ∙ ഥ𝑭vol
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F-barES-FEM (3 of 3)
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Like a ES-FEM

1. Shear locking free

Like a NS-FEM

2. Little pressure oscillation 

3. Volumetric locking free

with the aid of F-bar method

Isovolumetric part Volumetric part

This formulation is designed to have 3 advantages.

ഥ𝑭 = ෩𝑭iso ∙ ഥ𝑭vol
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Characteristics of S-FEMs
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Deformation

𝜺, 𝑭
Stress

𝑻
Displacement

𝒖
Internal force

𝒇int

F-barES-FEM decomposes this part.

✗ Stiffiness matrix becomes asymmetric

Selective ES/NS-FEM decomposes this part

✗ Constitutive models are restricted

Both of S-FEMs have disadvantages…
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Equation to solve
Equation of Motion

𝑀 ሷ𝑢 = 𝑓ext − {𝑓int},

Internal force vector is calculated as

Selective ES/NS-FEM

𝑓int = ෍

Edge

෨𝐵Edge ෨𝑇dev 𝑉 + ෍

Node

෨𝐵Node ෨𝑇hyd 𝑉

F-barES-FEM

𝑓int = ෍

Edge

෨𝐵Edge ത𝑇 𝑉
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𝐵-matrix of ES-FEM Stress derived from ഥ𝑭

Defenition of 𝑓int

in the same fashion

as F-bar method

Dev. parts are 

derived from ES-FEM

Hyd. parts are 

derived from NS-FEM
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Result & Discussion
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Bending of a cantilever
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 Dynamic explicit analysis.

 Neo-Hookean material

Initial Young’s modulus: 6.0 MPa,

Initial Poisson’s ratio: 0.499,

Density: 10000 kg/m3.

 Compare the results of S-FEMs

with Selective H8 (ABAQUS/Explicit C3D8) elements.
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Result of Standard T4 elements
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ABAQUS/Explicit

C3D8

(Reference)

Standard T4 element

×pressure oscillation

×locking

The result of standard T4 elements is useless…

at 𝑡 = 1.5 s
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Time history of deformed shapes
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ABAQUS/Explicit

C3D8

Reference

 All of S-FEMs are locking free.

 F-barES-FEM shows good result in earlier stage 

but gets worse in later stage.

 Selective ES/NS-FEM and NS-FEM cannot suppress pressure oscillation…

Selective

ES/NS-FEM
F-barES-FEM

(2)

NS-FEM
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Deformed shapes and pressure distributions
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Selective ES/NS-FEM and NS-FEM cannot suppress pressure 

oscillation due to the insufficient smoothing.

at 𝑡 = 1.5 s

ABAQUS/Explicit 

C3D8

(Reference)

Selective

ES/NS-FEM

NS-FEM
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Deformed shapes and pressure distributions

P. 21

ABAQUS/Explicit C3D8
(Selective H8 element)

Reference

at 𝑡 = 1.5 s

F-barES-FEM(2) is comparable to Selective H8 element!

F-barES-FEM(2)
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Time history of displacement
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 NS-FEM shows slightly soft result.

 Selective ES/NS-FEM and F-barES-FEM agree with the reference.

NS-FEM

Reference

Selective ES/NS-FEM

F-barES-FEM



ICCM2016

Time history of total energy
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 F-barES-FEM causes energy divergences in earlier stage…

 Increasing the number of smoothings suppresses

the speed of divergence.
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Natural Modes of ¼ Cylinder
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Outline

 Iron part: 𝐸ini = 200 GPa, 𝜈𝑖𝑛𝑖 = 𝟎. 𝟑, 𝜌 = 7800 kg/m3, 

Elastic, No cyclic smoothing.

 Rubber part: 𝐸ini = 6 MPa, 𝜈𝑖𝑛𝑖 = 𝟎. 𝟒𝟗𝟗, 𝜌 = 920 kg/m3, 

Elastic, 1 or 2 cycles of smoothing.

 Compare S-FEMs with ABAQUS C3D4 and C3D8.

Fixed

In Plane

Slide

In Plane

Slide

Rubber Part

Iron Part
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Natural frequencies of each mode
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1

NS-FEM

Reference

Selective ES/NS-FEM

F-barES-FEM

NS-FEM shows bad results due to spurious low-energy modes.

Selective ES/NS-FEM and F-barES-FEM agree with the reference.
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1st mode shapes
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1st mode shapes also agree with the reference solutions.

ABAQUS C3D8

(Reference)

F-barES-FEM(2)

Selective ES/NS-FEM

NS-FEM
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11th mode shapes
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NS-FEM shows spurious low-energy mode!

ABAQUS C3D8

(Reference)

F-barES-FEM(2)

Selective ES/NS-FEM

NS-FEM

spurious low-energy mode
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Distributions of natural frequencies of F-barES-FEM
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Some natural frequencies have small imaginary part…

Imag.

Part

Increasing the number of smoothings makes 

the frequencies close to real numbers.
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Cause of energy divergence
Due to the adoption of F-bar method,

the stiffness matrix 𝐾 becomes asymmetric.

Equation of Motion: 𝑀 ሷ𝑥 + 𝐾 𝑥 = {𝑓ext}

 Asymmetric stiffness matrix gives rise to imaginary part of 

natural frequencies and instability in dynamic problem.

 As shown before, increasing the number of smoothings

suppress the energy divergence speed.

P. 29

asymmetric

F-barES-FEM is restricted to 

short-term analysis (such as impact analysis)

with a sufficient number of smoothings.
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Swinging of Bunny Ears
Outline

 Iron ears: 𝐸ini = 200 GPa, 𝜈ini = 𝟎. 𝟑, 𝜌 = 7800 kg/m3, 

Neo-Hookean, No cyclic smoothing.

 Rubber body: 𝐸ini = 6 MPa, 𝜈ini = 𝟎. 𝟒𝟗, 𝜌 = 920 kg/m3, 

Neo-Hookean, 1 cycle of smoothing.

 Compared to ABAQUS/Explicit C3D4. No Hex mesh available!
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Iron Ears

Rubber

Body

Fixed

Initial Velocity

of Iron Ears
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Time histories of deformed shapes
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Only F-barES-FEM seems to be representing not pressure 

oscillations but pressure waves.

Selective ES/NS-FEM

F-barES-FEM NS-FEM

ABAQUS/Explicit C3D4

✔ Pressure

waves✗ Pressure oscillation

✗Pressure oscillation

✗suspension in

an early stage
✗Pressure oscillation
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Deformed shapes and sign of pressure

F-barES-FEM represents pressure waves correctly!
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✔ Pressure

waves

In an early stage

✗ Pressure 

oscillations

Selective ES/NS-FEM F-barES-FEM
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Deformed shapes and pressure distributions
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NS-FEM

NS-FEM shows strange shapes in large deformed part

✗strange shapes
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Summary
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Summary
Characteristics of S-FEMs are summarized like them.

Selective ES/NS-FEM

 Dynamic: with little pressure oscillation, temporary stable.

 Modal : high accuracy

 Constitutive equations are restricted.

F-barES-FEM

 Dynamic: with no pressure oscillation, temporary unstable.

 Modal : high accuracy, imaginary part of natural frequencies.

 It is restricted to short-term analysis.
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Thank you for your kind attention.
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Appendix
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B-barES-FEM
F-barES-FEM

𝑓int = ෍

Edge

෨𝐵Edge ത𝑇 𝑉

B-barES-FEM

𝑓int = ෍

Edge

ത𝐵Edge ത𝑇 𝑉
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derived from ES-FEM derived from ഥ𝑭
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Cantilever Bending Analysis

 Small deformation static analysis

 Compare B-barES-FEM with ABAQUS C3D20H
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Pressure distributions
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ABAQUS C3D20H

Reference
B-barES-FEM(1)

Reference
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Pressure distributions
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ABAQUS C3D20H

Reference
B-barES-FEM(2)

Reference
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Pressure distributions
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ABAQUS C3D20H

Reference
B-barES-FEM(3)

Reference
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Pressure distributions
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ABAQUS C3D20H

Reference
B-barES-FEM(4)

Reference
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Propagation of 1D pressure wave
Outline

 Small deformation analysis.

 Linear elastic material,

Young’s modulus: 200 GPa,

Poisson’s ratio: 0.0,

Density: 8000 kg/m3.

 Results of F-barES-FEM(0), (1), (2), and (3) are compared to 

the analysical solution.
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Propagation of 1D pressure wave
Results
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Velocity Verlet Method
Algorithm

1. Calculate the next displacement 𝑢𝑛+1 as

𝑢𝑛+1 = 𝑢𝑛 + ሶ𝑢𝑛 Δt +
1

2
ሷ𝑢𝑛 Δt2.

2. Calculate the next acceleration ሷ𝑢𝑛+1 as

ሷ𝑢𝑛+1 = 𝑀−1 ({𝑓ext} − {𝑓int(𝑢𝑛+1)}).

3. Calculate the next velocity ሶ𝑢𝑛+1 as

ሶ𝑢𝑛+1 = ሶ𝑢𝑛 + ሷ𝑢𝑛+1 𝛥𝑡

Characteristics

 2nd order symplectic scheme in time.

 Less energy divergence.
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Cause of energy divergence
Due to the adoption of F-bar method,

the stiffness matrix 𝐾 becomes asymmetric

and thus the dynamic system turns to unstable.

Equation of natural vibration, 𝑀 ሷ𝑢 + [𝐾]{𝑢} = {0}, 
derives an eigen equation, ( 𝑀 −1[𝐾]) 𝑢 = 𝜔2{𝑢}, 
which has asymmetric left-hand side matrix.

⇒Some of eigen frequencies could be complex 

numbers.

⇒When an angular frequency 𝜔𝑘 = 𝑎 + i𝑏 （𝑏 > 0）,

the time variation of the 𝑘th mode is
𝑢 𝑡 = Re 𝑢𝑘 exp −i𝜔𝑘𝑡

= Re 𝑢𝑘 exp −i𝑎𝑡 exp 𝑏𝑡
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Divergent term!
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ABAQUS/Explicit C3D4

(Standard T4 element)

✗ Pressure

oscillation

in iron ears

A rubber parts is a “bad apple” when Standard T4 elements are used.

In a later stage

Deformed shapes and sign of pressure

✔ No pressure

oscillation

in iron ears

It should be noted that a presence of rubber spoils over all 

accuracy of the analysis with Standard T4 elements.

F-barES-FEM


