Multi-physics Galvanic Corrosion Analysis for Carbon-Aluminium Structures under Saltwater Film

Yuki ONISHI, Koichi MASUYA, Kenji AMAYA Tokyo Institute of Technology, Japan

- The multi-material design of vehicles is recently in progress in order to reduce the weight.
- Especially, carbon fiber reinforced plastics (CFRP) and aluminium alloys (AI) are coming into use.
- As a result, galvanic corrosion occurs around the joint parts of different materials under saltwater film (e.g., seawater, solution of snow melting agents, etc.).

Fig. multi-material designed vehicle BMW Japan Corp. http://www.bmw.co.jp/jp/ja/ insights/corporation/bmwi/ concept.html

General Mechanism of Galvanic Corrosion

- 1. When multiple conductive materials with different ionization tendencies (or natural potentials) contact in electrolyte solution, an electric cell is formed.
- 2. The material with lower natural potential dissolves to the solution.
- 3. In addition, if the dissolved ions hydrolyze, pH of the solution becomes lower (acid).
- 4. Lower pH leads to further accelerated corrosion.

Fig. Galvanic corrosion TRANECT LTD http://www.stainl esssteelbraid.co. uk/galvanic_corr osion.php

Evaluation of the **corrosion rate** in a variety of environments is important for safety engineering.

Issues in Corrosion Rate Evaluation

Issues in traditional Experimental Evaluation:

- A large number of tests are required.
- It costs high in terms of time and money.

Issues in recent Numerical Evaluation:

- A complicated multi-physics formulation is required. (i.e., electrostatics, mass transport, and chemical reactions.)
- A few constraints are difficult to be satisfied. (i.e., mass conservation and electroneutrarity)
- Explicit time integration is easy to implement but slow due to the Courant (CFL) condition. (i.e., Speed of H⁺ ion is fast $\Rightarrow \Delta t$ should be small.)

Conventional Corrosion Simulations

	K. L. Heppner et al. ^[1]	S. Scheiner et al. ^[2]	Y. Onishi et al. ^[3]
Multi-physics	\checkmark	×	 Image: A set of the set of the
Mass conservation	×	\checkmark	 Image: A set of the set of the
Electroneutrarity	\checkmark	×	<
Implicit integration	×	×	×

No standard method that satisfies all of the above has been established yet...

[1] K. L. Heppner *et al.*, Corrosion Eng Sci Tec, Vol. 41, No. 2, pp. 110--121, 2006.
[2] S. Scheiner *et al.*, CMAME Vol. 198, No. 37-40, pp. 2898--2910, 2009.
[3] Y. Onishi *et al.*, Corrosion Science, Vol. 63, pp. 210--224, 2012.

Objective

Developing a *fast* and *accurate* numerical multi-physics simulator for localized galvanic corrosion especially for CFRP/AI composite under a seawater film

Table of Body Contents

- Mechanism of galvanic corrosion on CFRP/AI composite under a seawater film
- Our method to solve the corrosion problem
- Validation of our method

Summary

Mechanism of Galvanic Corrosion on CFRP/Al Composite under a Seawater Film

- In seawater, sodium ions Na⁺ and chloride ions Cl⁻ are dominated.
- There are sufficient oxygen molecules (0₂) in the seawater film because the interface between air and the seawater film is relatively large.

- As AI has lower natural potential than CFRP, AI is dissolved by the cell reaction.
- Electric current flows from CFRP to AI in the solid part.
- **Chemical Reactions:**

- The generated ions (hydroxide ions OH⁻ and aluminium ions Al³⁺) are electrically neutralized by the electrolyte ions, Na⁺ and Cl⁻.
- Generation of OH⁻ makes the solution on the CFRP alkaline.

Hydrolysis of Al³⁺ makes the solution on the Al acid. Chemical Reactions:

- $Al^{3+} + H_20 \rightleftharpoons AlOH^{2+} + H^+, \qquad Al^{3+} + 2H_20 \rightleftharpoons Al(OH)_2^+ + 2H^+,$
 - $Al^{3+} + 3H_20 \rightleftharpoons Al(OH)_3 \downarrow + 3H^+, Al^{3+} + 4H_20 \rightleftharpoons Al(OH)_4^- + 4H^+.$

■ Aluminium hydroxide $Al(OH)_3$ precipitates(1) on the Al surface as white sludge.

Our Method to Solve the Corrosion Problem

Governing Equations

<u>1) Laplace equation</u> in the electrostatic field

$$\kappa \nabla^2 \phi = \nabla \boldsymbol{J} = 0$$

$$\kappa$$
Electrical conductivity (S m⁻¹) ϕ Electrostatic potential (V) J Current density (A m⁻²) C_i Molar concentration of ion i (mol m⁻³) z_i Charge number of ion i u_i Mobility of ion i (m² mol J⁻¹ s⁻¹) F Faraday's constant (F m⁻¹)

$$D_i$$
 Diffusion coefficient of ion *i* (m² s⁻¹)

$$\frac{\partial C_i}{\partial t} = -\nabla \cdot (-z_i u_i C_i F \nabla \phi - D_i \nabla C_i) + E_i (C_i)$$

Electrophoresis Mass diffusion Chemical reaction

We solve these 2 eqs. of the multi-physics problem with a weak-coupling method.

2C

Flowchart

Our method adopts the voxel-based finite volume method (Voxel FVM).

FVM

Corrosion rates are calculated with considering the multi-physics problem.

Voxel method

Metal shape and surface area are updated.

Point 1: Mass Conservation

- Voxels are used as the control volumes of FVM.
- Due to the adoption of FVM, mass conservation is perfectly satisfied.

Point 2: Electroneutrality

The following equation should be considered as an additional constraint of the mass transport analysis.

$$\widehat{J} = F \sum_{i \in \mathbb{I}} z_i \widehat{N}_i$$
.

 \hat{J} Normal current density (A m⁻²)

- *F* Faraday's constant (C mol⁻¹)
- z_i Charge number of ion *i*
- \widehat{N}_i Normal molar flux density of ion *i* (mol m⁻² s⁻¹)
- In mass transport analysis, \hat{N}_i s are treated as unknowns and the solution is corrected with a projection method (similar to MAC method in CFD).
- Due to this treatment, electroneutrality is perfectly satisfied.

Point 3: Implicit Time Integration

In mass transport analysis with implicit scheme, \widehat{N}_i s are treated as unknowns and the solution is given by solving a matrix equation for each time step.

- •The formulation becomes complicated,
- •The analysis requires a matrix solver. BUT,
- •CFL condition needs not to be satisfied and thus large Δt is acceptable.

In total, implicit scheme is faster than explicit scheme.

Boundary Conditions

curve

FEOFS2016

P. 18

<u>Electrostatic analysis</u>

Polarization

- On CFRP: $\hat{J} = P_{\text{cathode}}(\phi, \text{pH}),$
- On AI: $\hat{J} = P_{anode}(\phi, pH), \hat{A}$
- On Air: $\hat{J} = 0$.

Polarization curve represents relationship between (ϕ , pH) and \hat{f} .

<u>Mass transport analysis</u>

On CFRP:
$$\widehat{N}_i = \frac{\lambda_i^{\text{CFRP}}}{F \sum_{k \in I} \lambda_k^{\text{CFRP}} z_k} \widehat{J}$$
,

On AI:
$$\widehat{N}_i = \frac{\lambda_i^{\text{Al}}}{F \sum_{k \in I} \lambda_k^{\text{Al}} z_k} \widehat{f},$$

On Air: $\widehat{N}_i = 0$ (except O_2),

$$C_{O_2} = \text{const.}$$

ĵ	Normal current density (A m ⁻²)
ϕ	Electrostatic potential (V)
\widehat{N}_i	Normal molar flux density of ion i (mol m ⁻²)
$\lambda_i^{ ext{CFRP}}$	Reaction ratio on CFRP of ion <i>i</i>
$\lambda_i^{ m Al}$	Composition ratio of AI of ion <i>i</i>
z _i	Charge number of ion <i>i</i>
F	Faraday's constant (C mol ⁻¹)

Validation of Our Method

Experimental Setup

Glassy carbon (GC) is used instead of CFRP for simplicity.

- Plastic plate is inserted between GC and Al plates.
- NaOH solution is put in an acrylic case with the test piece for CO_2 removal and humidification.
- pH meters are set in the middle of each plate.

Experimental Setup

- Size of each electrode is 40 mm \times 10 mm.
- Thickness of the NaCl solution film is 2 mm.
- Strength of NaCl solution is 0.5 wt%.
- Corrosion current is measured by ammeter.
- The test time is 72 hours.
- Two tests are conducted.

Conditions of Numerical Analysis

<u>Analysis domain</u>

- Cell size: 1mm × 1 mm.
- Chemical species:

H⁺, OH⁻, Na⁺, Cl⁻, O₂, Al³⁺, AlOH²⁺, Al(OH)₂⁺, Al(OH)₃, Al(OH)₄⁻.

- Initial conditions: concentrations of each ion.
- Electro conductivity: constant κ of 1.0 wt% NaCI solution

 $(\neq 0.5 \text{ wt\%}).$

Conditions of Numerical Analysis

<u>Analysis domain</u>

Tokyo Institute of Technology

P. 23

Interval Photo Movie of Experiment

Results (Al(OH)₃ at finish time)

The position of $AI(OH)_3$ white sludge is well agreed.

Results (pH at finish time)

Experiment

Tokyo Institute of Technology

Numerical simulation pH 13 pH 3.7 GC AI рΗ 3.708e+008.34 1.298e+01 Probably 3.71 13 due to The simulated pH on GC is a little high unremoved in comparison to the experimental result. CO_2 . **FEOFS2016** 東京工業7

P. 26

ΤΟΚΥΟ ΤΕΓΗ

Pursuina Excellence

- The tendencies of pH change are successfully simulated.
- The quantitative agreement on GC is our future issue.

Results (corrosion current time history)

- The magnitude of simulated current is approximately agreed with the average of the experimental results.
- Yet, the increasing tendency of current could not be reproduced by our present model.

The increase in current is probably due to the increase of electro conductivity.

CPU Time

CPU Time for the 72 h corrosion analysis

Scheme	CPU Time	Speed (vs. Exp.)
Explicit time integration (our previous)	3 h 48 m 50 s	x 24
Implicit time integration (our new)	0 h 09 m 08 s	x 470

Our implicit scheme for mass transport analysis enables large Δt and thus is much faster than the conventional explicit scheme.

- A multi-physics simulator for localized galvanic corrosion was developed.
- It takes the followings into account.
 - > electrophoresis
 - > chemical reactions
 - > mass conservation
 - > implicit time integration
- ns > moving boundaries
 on > electroneutrality

> mass diffusion

- A validation test with GC/AI composite revealed that our method was able to reproduce the distributions of pH and white sludge, and corrosion current approximately.
- A practical method for localized galvanic corrosion analysis is almost established.

Thank you for your kind attention.

