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Background
Thermal nanoimprinting and micro hot 

embossing have been in industrialization stage.
Effective method for process design 

(temperature, pressure, time, etc.) is required.
Current situation
Repetitive experiments for process optimization.
Repetitive experiments cost high!!
Numerical simulation should help.

Final Goal
Establishment of numerical technique

for thermal nanoimprint process optimization.
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Choice of Numerical Method
Choice1: Continuum or Molecular
 If the target size is over several tens of nms, the number of 

molecules is large enough to be modeled as a continuum.
 The problem is huge for MD.

Choise2: Solid or Fluid
 In thermal imprints, temperature is around Tg at most.
Rheology effect can be consolidated in viscoelastic model.

Choise3: Meshfree or Mesh
 “Mesh”(=FEM) is usually used and has achievements. 
 “Meshfree”(=SPH, EFGM, etc.) is expected to be a good 

method to treat extremely large deformation, but still under 
development and yet has no achievements.

Most of the researches use FEM.
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Our Previous Work (Outline)
Finite element Analysis
 Geometric nonlinear 

(Large deformation)
 Material nonlinear

(thermo-viscoelastic polymer)
 Contact nonlinear
 Quasi-static analysis

Mold
（rigid）

Polymer
(thermo-viscoelastic)

Onishi et al.,
JVST B (2008) etc.

FE analyses agreed
with experiments

in case of 
line-and-space

up to AR=1
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Our Previous Work (Viscoelastic)
Generalized Maxwell Model

Ginf

Gn

τ1 τn

G1

Ginf：Long-term shear modulus
G0=Ginf +∑Gi：

Instantaneous shear Modulus
τ1~τn：Relaxation time

When a forced displacement 
x(t)=sin(ωt) applied at the 
temperature θ, 
reaction force f(t) become

G' ：Shear storage modulus
       (same phase)
G’’ ：Shear loss modulus
       (90o shifted)
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Our Previous Work (Material Test)
Uniaxial tension-compression tests

at various temperatures and frequencies
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heater

device：01dB-METRAVIB VA2000
frequency range：0.001～200(Hz)
load range：±100(N)
temperature range：-150～450(degC)
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Our Previous Work (Example2)
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Our Previous Work (Example2)
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Our Previous Work (Example1)

9






ASNIL2010

Our Previous Work (Example2)

Simulated deformations of the line-and-space 
imprinting agreed with experiments.
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Our Previous Work (Summary)
Time evolutional deformation behavior was 

successfully simulated with FEM in cases of 
line-and-space patterning. 
The thermo-viscoelastic constitutive model we 

chose was appropriate.
 It has potential to simulate any deformation in 

thermal nanoimprintings.
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Objective
Our previous work hit the wall…
 In practical applications,

AR over 1 is not uncommon.
(even AR>3 is usual.)
FEM cannot treat the extremely large 

deformation without adaptive meshing.  
(Adaptive meshing is difficult to implement.)

Objective
Development of a meshfree method

for viscoelastic large deformation analysis
(utilize it for thermal nanoimprint process optimization in the future)
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Hiral et. al
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Difference between FEM and Meshfree
Way of domain integration
FEM (element base)
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integration
point

OK

BAD

concave

volumetric
locking

node

BAD

Frequently happens
especially in case of

compression analysis

nearly
incompressible
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Difference between FEM and Meshfree
Way of domain integration
Meshfree (collocation type) ---- SPH
Meshfree (Petrov-Galerkin type) ---- MLPG
Meshfree (Galerkin type) ---- EFGM

background cell integration
nodal integration
stress point integration (SPI)

(No standard formulation of SPI)
*No element
*Less locking
*Fair integration accuracy
*Requirement of stabilization
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node

stress
point

close to FEM
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IR

Robust MLS Approximation
Moving Least Squares (MLS) to build shape function

Support radius

Weight function

IRIR

(small)
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Update of SP States

Location

Volume

Vinitial：initial volume，F：deformation gradient

x: current location, S: set of nodes in the support,
φ: shape function
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Viscoelastic Material Properties
material constants used in example analysis

instantaneous Young’s modulus（E0）： 9 GPa
instantaneous Poisson’s ratio（ν0）： 0.333・・・
instantaneous shear modulus（G0）： 3.375 GPa

bulk modulus（K）： 9 GPa
dimensionless shear modulus（g）： 0.9
relaxation time（τ）： 5 s

long-term Young’s modulus（E∞）： 1 GPa
long-term Poission’s ratio（ν∞）： 0.481
long-term shear modulus(G∞): 0.3375 GPa
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behavior at
room temperature

behavior
around Tg
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Bending of Cantilever

Static/Quasi-static, Plane strain
50x5 structured grid nodes
Concentrated force at right-top node
Compared to FEM(ABAQUS/Standard) with 

same node arrangements and selective 
reduced integration quadrangle elements

Elastic/Viscoelastic body

1m
0.1m

200 kN
Force

Tim
e1s 100s
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Bending of Cantilever (elastic)

Less than 1% error of displacement
No problem in elastic large deflection analysis

E=1GPa, ν=0.49

ABAQUS/Standard                       Proposed Method
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Bending of Cantilever (viscoelastic)

ABAQUS/Standard                       Proposed Method

P.20

E0=9GPa, ν0=0.333,  Einf=1GPa, νinf=0.481
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Bending of Cantilever (viscoelastic)

 2.5% error of displacement
 Error decreases as dt decreases
 Further improvement of time-advancing scheme is 

necessary
P.21
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Imprinting-like Analysis
Quasi-static, plane strain
Horizontal bounding for 

left and right side
Vertical bounding for 

bottom side
Enforced displacement 

for right half of top side 
toward downward with 
horizontal bounding
Unstructured grid with 

fineness and coarseness

0.6µm disp.
in 80s

1µm

1µm
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Imprinting-like Analysis (FEM)

 Inappropriate deformation because of the 
locking under the corner

P.23
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Imprinting-like Analysis (FEM)
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Imprinting-like Analysis (animation)

An appropriate result was obtained.
P.25
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Summary & Future Work
 Summary
A Meshfree formulation of large deformation of viscoelastic

body was proposed.
 It has fair accuracy in large deflation analysis.
Appropriate result is obtained in imprinting-like analysis.
 Further modification is required to apply it to thermal 

nanoimprint simulation.
 Future work
 Improvement of time advancing scheme
Verification with experiments or FEM with adaptive 

meshing
 Insertion of additional nodes and SPs during analysis
Contact analysis
Cooling and demolding analysis
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SP Integration (initialization)
 (currently) SPs are generated from FE meshes

[Note] meshes are only for initialization!!!
 Locate every SP in the middle edges
    (Belytschko’s SP integration has master and slave SPs.)
 Corresponding SP volume is calculated with meshes

：node
(has only x and u)

：stress point (SP)
(has x, T, E, E v, etc.)
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Integration Correction
 Integration constraint

 Integration correction (IC)

n: outward normal unit vector, A: correspoiding nodal area
JS: set of SPs that include node J in the support

determine γ s so that modified ψ s satisfy reproducing constraints 
including integration constraint
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Quasi-implicit Time Advancing
Start of time increment loop

Start of Newton-Raphson loop
update support, w, φ, etc.
calc f int. and K
calc r = f int. -f ext.

solve K δu = r
update node locations
update SP locations

End of Newton-Raphson loop
End of time increment loop

Typical fully-implicit 
time advancing
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Quasi-implicit Time Advancing
Start of time increment loop
update support, w, φ, etc.
renew f virtual

Start of Newton-Raphson loop
update support, w, φ, etc. 
calc f int. and K
calc r = f int. -f ext. -f virtual

solve K δu = r
update node locations
update SP locations

End of Newton-Raphson loop
End of time increment loop

Enforcement of
temporal continuity of the
mechanical equilibrium

Constant shape function
in each

Newton-Raphson loop
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FEM
Integration points are pseudo-Lagrange points.
Elements must be convex.
1st order triangular element has volumetric locking.

Meshfree with BG cells
Integration points are Euler points.
Difficulties in treating free surfaces.
Difficulties in convection of state quantities.

Meshfree without cells
Integration points are Lagrange points.
Difficulties in precise domain integration.
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Shear Behavior of Polymer
Generalized Maxwell Model

Ginf

Gn

τ1 τn

G1

Ginf：Long-term shear modulus
G0=Ginf +∑Gi：

Instantaneous shear Modulus
τ1~τn：Relaxation time

When a forced displacement 
x(t)=sin(ωt) applied at the 
temperature θ, 
reaction force f(t) become

G' ：Shear storage modulus
       (same phase)
G’’ ：Shear loss modulus
       (90o shifted)
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Constitutive Equation of Polymer
Constitutive equation
1)Volumetric Behavior 2)Shear Behavior

[P] : hydrostatic stress tensor
K : bulk modulus
Evol: volumetric strain
[I]: identity tensor

[S]: deviatoric stress tensor
G0: instantaneous shear modulus

(=Ginf +G1+ ... + Gn)
[E’]: deviatoric strain tensor
gi: ith dimensionless shear modulus

(=Gi/G0)
[Ev’]i: ith viscous strain tensor

Combining [P] and [S], We obtain stress tensor [T] as:
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Temperature Dependency of Polymer
WLF law (temperature-time conversion)

temperature increase reduced time increase
WLF law

t: real time
t’: reduced time
θref, C1, C2: material constants
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Patch Test

Elastic body, Static, Plane-strain
 Irregularly-arranged nodes and SPs
Displacement BC for every external nodes

：node
：stress point
(SP)
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Patch Test (animation)
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Patch Test (result)

within 1% error of Mises stress
Proposed method passes the patch test

38


	A Meshfree Approach�for Large Deformation Analysis�in Thermal Nanoimprint
	Background
	Choice of Numerical Method
	Our Previous Work (Outline)
	Our Previous Work (Viscoelastic)
	Our Previous Work (Material Test)
	Our Previous Work (Example2)
	Our Previous Work (Example2)
	Our Previous Work (Example1)
	Our Previous Work (Example2)
	Our Previous Work (Summary)
	Objective
	Difference between FEM and Meshfree
	Difference between FEM and Meshfree
	Robust MLS Approximation
	Update of SP States
	Viscoelastic Material Properties
	Bending of Cantilever
	Bending of Cantilever (elastic)
	Bending of Cantilever (viscoelastic)
	Bending of Cantilever (viscoelastic)
	Imprinting-like Analysis
	Imprinting-like Analysis (FEM)
	Imprinting-like Analysis (FEM)
	Imprinting-like Analysis (animation)
	Summary & Future Work
	スライド番号 27
	SP Integration (initialization)
	Integration Correction
	Quasi-implicit Time Advancing
	Quasi-implicit Time Advancing
	スライド番号 32
	Shear Behavior of Polymer
	Constitutive Equation of Polymer
	Temperature Dependency of Polymer
	Patch Test
	Patch Test (animation)
	Patch Test (result)

